DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA101S: Mathematics-I Instructor: Rajesh Srivastava Time duration: 03 hours EndSem July 8, 2018 Maximum Marks: 55

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Does the image of a circle under any 2×2 invertible matrix is a circle?
 - (b) Let A be a $m \times n$ matrix such that Ax = b has two solutions for every $b \in \mathbb{R}^m$. Does it imply that Ay = 0 has infinitely many solutions?
 - (c) Does there exist a non-zero diagonalizable matrix having a zero eigenvalue? 1
 - (d) Let $f : [-1,1] :\to \mathbb{R}$ be defined by f(x) = 0 if $-1 \le x < 0$ and f(x) = 1 if $0 \le x \le 1$. Let $F(x) = \int_{-1}^{x} f(t) dt$. Whether F is differentiable at x = 0?

2. Let $A = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix}$. Find a matrix $E = (e_{ij})_{3\times 3}$ with $e_{ij} \in \{0, 1\}$ such that EA is an upper triangular matrix.

- 3. Show that a square matrix A of order n is invertible if and only if $det(A) \neq 0$. 4
- 4. Let $\{x_0, x_1, \ldots, x_n\}$ be a set in \mathbb{R} . Show that there exists a polynomial p of degree n that satisfies $p(x_i) = i$; $i = 0, 1, \ldots, n$.
- 5. Let $W_1 = \{(x, y, z) : x + y + z = 0\}$ and $W_2 = \{(x, y, z) : x + 2y + 3z = 0\}$. Show that $W_1 + W_2 = \mathbb{R}^3$. What is the dimension of $W_1 \cap W_2$?
- 6. Let $\mathbb{P}_2(\mathbb{R})$ be the space of all polynomials of degree at most 2. Find the co-ordinates of $1 + 2x + x^2$ with respect to $\{1 + x, 1 x, 1 x + x^2\}$. **3**
- 7. Let A be an $n \times n$ invertible matrix and let $\{v_1, \ldots, v_n\}$ a be basis for \mathbb{R}^n . Then show that $\mathbb{R}^n = \operatorname{span}\{Av_1, \ldots, Av_n\}$.
- 8. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (1,1,0), T(1,1,0) = (0,1,0) and T(1,1,1) = (1,2,0). Find R(T) and N(T).
- 9. Find a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $R(T) = \operatorname{span}\{(1,2,3), (3,2,1)\}$ and $N(T) = \operatorname{span}\{(1,1,0)\}.$
- 10. Let \mathbb{R}^3 be equipped with the usual inner product $\langle (x, y, z), (x', y', z') \rangle = xx' + yy' + zz'$. Find a basis for the orthogonal complement of the set $\{(1, 1, 1), (2, 1, 0)\}$.

- 11. Let $\langle ., . \rangle$ be the usual inner product on \mathbb{R}^2 . If $A = (a_{ij})_{2 \times 2}$ matrix satisfies $\langle Ax, x \rangle = 0$ for all $x \in \mathbb{R}^2$, then show that $a_{11} = a_{22} = 0$ and $a_{12} + a_{21} = 0$. **5**
- 12. Let A, B and C be real symmetric square matrices of order n such that $A^2+B^2+C^2=0$. Show that A=B=C=0.
- 13. Show that the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 2 & 2 & 3 \end{bmatrix}$ is diagonalizable. Whether A is a nilpotent

matrix?

- 14. Find the $\lim_{n \to \infty} \frac{n}{n^2 + 1} \left\{ \sin \frac{1}{n} + \sin \frac{2}{n} + \dots + \sin \frac{n}{n} \right\}.$
- 15. Let f and g be Riemann integrable functions on [0,1] such that $\int_0^1 f(t)dt = \int_0^1 g(t)dt$. If h is a function on [0,1] satisfying $f(t) \le h(t) \le g(t)$ for all $t \in [0,1]$, then show that h is Riemann integrable on [0,1].

END