DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA101S: Mathematics-I
Instructor: Rajesh Srivastava
EndSem
Time duration: 03 hours
N.B. Answer without proper justification will attract zero mark.

1. (a) Does the image of a circle under any 2×2 invertible matrix is a circle?
(b) Let A be a $m \times n$ matrix such that $A x=b$ has two solutions for every $b \in \mathbb{R}^{m}$. Does it imply that $A y=0$ has infinitely many solutions?
(c) Does there exist a non-zero diagonalizable matrix having a zero eigenvalue?
(d) Let $f:[-1,1]: \rightarrow \mathbb{R}$ be defined by $f(x)=0$ if $-1 \leq x<0$ and $f(x)=1$ if $0 \leq x \leq 1$. Let $F(x)=\int_{-1}^{x} f(t) d t$. Whether F is differentiable at $x=0$?
2. . Let $A=\left[\begin{array}{lll}0 & 0 & 6 \\ 1 & 2 & 3 \\ 0 & 4 & 5\end{array}\right]$. Find a matrix $E=\left(e_{i j}\right)_{3 \times 3}$ with $e_{i j} \in\{0,1\}$ such that $E A$ is an upper triangular matrix.
3. Show that a square matrix A of order n is invertible if and only if $\operatorname{det}(A) \neq 0$.
4. Let $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a set in \mathbb{R}. Show that there exists a polynomial p of degree n that satisfies $p\left(x_{i}\right)=i ; i=0,1, \ldots, n$.
5. Let $W_{1}=\{(x, y, z): x+y+z=0\}$ and $W_{2}=\{(x, y, z): x+2 y+3 z=0\}$. Show that $W_{1}+W_{2}=\mathbb{R}^{3}$. What is the dimension of $W_{1} \cap W_{2}$?
6. Let $\mathbb{P}_{2}(\mathbb{R})$ be the space of all polynomials of degree at most 2 . Find the co-ordinates of $1+2 x+x^{2}$ with respect to $\left\{1+x, 1-x, 1-x+x^{2}\right\}$.
7. Let A be an $n \times n$ invertible matrix and let $\left\{v_{1}, \ldots, v_{n}\right\}$ a be basis for \mathbb{R}^{n}. Then show that $\mathbb{R}^{n}=\operatorname{span}\left\{A v_{1}, \ldots, A v_{n}\right\}$.
8. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that $T(1,0,0)=(1,1,0), T(1,1,0)=$ $(0,1,0)$ and $T(1,1,1)=(1,2,0)$. Find $R(T)$ and $N(T)$.
9. Find a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $R(T)=\operatorname{span}\{(1,2,3),(3,2,1)\}$ and $N(T)=\operatorname{span}\{(1,1,0)\}$.
10. Let \mathbb{R}^{3} be equipped with the usual inner product $\left\langle(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\rangle=x x^{\prime}+y y^{\prime}+z z^{\prime}$. Find a basis for the orthogonal complement of the set $\{(1,1,1),(2,1,0)\}$.
11. Let $\langle.,$.$\rangle be the usual inner product on \mathbb{R}^{2}$. If $A=\left(a_{i j}\right)_{2 \times 2}$ matrix satisfies $\langle A x, x\rangle=0$ for all $x \in \mathbb{R}^{2}$, then show that $a_{11}=a_{22}=0$ and $a_{12}+a_{21}=0$.
12. Let A, B and C be real symmetric square matrices of order n such that $A^{2}+B^{2}+C^{2}=0$. Show that $A=B=C=0$.
13. Show that the matrix $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & 0 \\ 2 & 2 & 3\end{array}\right]$ is diagonalizanle. Whether A is a nilpotent matrix?
14. Find the $\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}\left\{\sin \frac{1}{n}+\sin \frac{2}{n}+\cdots+\sin \frac{n}{n}\right\}$.
15. Let f and g be Riemann integrable functions on $[0,1]$ such that $\int_{0}^{1} f(t) d t=\int_{0}^{1} g(t) d t$. If h is a function on $[0,1]$ satisfying $f(t) \leq h(t) \leq g(t)$ for all $t \in[0,1]$, then show that h is Riemann integrable on $[0,1]$.

END

