DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA101S: Mathematics-I Instructor: Rajesh Srivastava Time duration: 02 hours MidSem June 10, 2018 Maximum Marks: 40

3

N.B. Answer without proper justification will attract zero mark.

- 1. (a) What is the infimum of the set $A = \left\{ e^{-n} + \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$? 1
 - (b) Does there exist a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f(e^{-n^2}) = f(\cos n)$ for all $n \in \mathbb{N}$?
 - (c) Let $f: (0,1) \to \mathbb{R}$ be differentiable. For $c \in (0,1)$ to be a point of inflection, is it necessary that f''(c) = 0?
 - (d) Does there exist a power series $\sum a_n x^n$ that converges only at two points in \mathbb{R} ? 1
 - (e) Let $f : [a, b] \to \mathbb{R}$ be continuous and satisfying $\int_a^x f(t)dt = \int_x^b f(t)dt$. Does it imply that f is constant?
- 2. Whether the series $\sum_{n=1}^{\infty} \frac{3^n + 2^{n+1}}{5^n}$ is convergent? If yes, find the sum of the series. 2

3. Find all $\alpha \in \mathbb{R}$ such that the sequence $x_n = \sqrt{(n+1)^{\alpha} - n^{\alpha}}$ is convergent.

4. Determine all values of $x \in \mathbb{R}$ such that the power series $\sum_{n=2}^{\infty} \frac{(x-4)^n}{n(\log n)^2}$ is convergent. 4

- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable at x = 0 and f'(0) > 0. If f(0) = 0, then show that there exists $\delta > 0$ such that $f(x) \neq 0$ for all $x \in (-\delta, \delta) \setminus \{0\}$.
- 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying |f(x)| < 1 for all $x \in \mathbb{R}$. Prove that there exists $c \in \mathbb{R}$ such that $f^2(c) + f^4(c) = 2c$.
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(x) = x^3 + 1$ for for all $x \in \mathbb{Q}$. Find the value of $f(\sqrt{2}) + f(\sqrt{3})$.
- 8. Let f be a continuous function on [0, 1] and differentiable on (0, 1). If f'(x) > f(x) for all $x \in (0, 1)$ and f(0) = 0, then show that f(x) > 0 for all $x \in (0, 1]$.
- 9. Find the Taylor series of $\cos x$ around x = 0 that converges to $\cos x$ on (-1, 1).
- 10. Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions satisfying $|f(x)| \leq |g(x)|$ for all $x \in (-\delta, \delta)$ and for some $\delta > 0$. If g is differentiable at 0 and g'(0) = 0 = g(0), then show that f is differentiable at 0.
- 11. Examine whether the improper integral $\int_{0}^{\infty} \frac{dx}{2x^2 + \sqrt{x}}$ is convergent? 4

END