DEPARTMENT OF MATHEMATICS
 Indian Institute of Technology Guwahati

MA101S: Mathematics-I
MidSem
Instructor: Rajesh Srivastava
June 10, 2018
Time duration: 02 hours
Maximum Marks: 40
N.B. Answer without proper justification will attract zero mark.

1. (a) What is the infimum of the set $A=\left\{e^{-n}+\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$?
(b) Does there exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(e^{-n^{2}}\right)=f(\cos n)$ for all $n \in \mathbb{N}$?
(c) Let $f:(0,1) \rightarrow \mathbb{R}$ be differentiable. For $c \in(0,1)$ to be a point of inflection, is it necessary that $f^{\prime \prime}(c)=0$?
(d) Does there exist a power series $\sum a_{n} x^{n}$ that converges only at two points in \mathbb{R} ? $\mathbf{1}$
(e) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and satisfying $\int_{a}^{x} f(t) d t=\int_{x}^{b} f(t) d t$. Does it imply that f is constant?
2. Whether the series $\sum_{n=1}^{\infty} \frac{3^{n}+2^{n+1}}{5^{n}}$ is convergent? If yes, find the sum of the series.
3. Find all $\alpha \in \mathbb{R}$ such that the sequence $x_{n}=\sqrt{(n+1)^{\alpha}-n^{\alpha}}$ is convergent.
4. Determine all values of $x \in \mathbb{R}$ such that the power series $\sum_{n=2}^{\infty} \frac{(x-4)^{n}}{n(\log n)^{2}}$ is convergent. 4
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable at $x=0$ and $f^{\prime}(0)>0$. If $f(0)=0$, then show that there exists $\delta>0$ such that $f(x) \neq 0$ for all $x \in(-\delta, \delta) \backslash\{0\}$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $|f(x)|<1$ for all $x \in \mathbb{R}$. Prove that there exists $c \in \mathbb{R}$ such that $f^{2}(c)+f^{4}(c)=2 c$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=x^{3}+1$ for for all $x \in \mathbb{Q}$. Find the value of $f(\sqrt{2})+f(\sqrt{3})$.
8. Let f be a continuous function on $[0,1]$ and differentiable on $(0,1)$. If $f^{\prime}(x)>f(x)$ for all $x \in(0,1)$ and $f(0)=0$, then show that $f(x)>0$ for all $x \in(0,1]$.
9. Find the Taylor series of $\cos x$ around $x=0$ that converges to $\cos x$ on $(-1,1)$.
10. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions satisfying $|f(x)| \leq|g(x)|$ for all $x \in(-\delta, \delta)$ and for some $\delta>0$. If g is differentiable at 0 and $g^{\prime}(0)=0=g(0)$, then show that f is differentiable at 0 .
11. Examine whether the improper integral $\int_{0}^{\infty} \frac{d x}{2 x^{2}+\sqrt{x}}$ is convergent?
