DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis Instructor: Rajesh Srivastava Time duration: Two hours Quiz II November 8, 2019 Maximum Marks: 10

3

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let X and Y be two normed linear spaces. If $T: X \to Y$ is a linear map that satisfying $\inf\{||Tx||: ||x|| = 1\} > 0$. Does it imply that T is injective? 1
 - (b) Let X and Y be two normed linear spaces. Suppose $T \in B(X, Y)$ is open and injective. Does it imply that T is invertible?
 - (c) Whether the identity linear transformation $I : (l^1, \|\cdot\|_1) \to (l^1, \|\cdot\|_\infty)$ is a closed map? 1
- 2. Let $T: (L^1[0,1], \|\cdot\|_1) \to (C[0,1], \|\cdot\|_\infty)$ be the linear transformation defined by

$$T(f)(x) = \int_0^x e^{-t^2} f(t) dt$$

Show that T satisfies the condition $\frac{1}{3} \leq ||T|| \leq 1$.

- 3. Let X be a Banach space. If the sequence $T_n \in B(X, X)$ converges to T such that T_n^{-1} exists and bounded in B(X, X). Then show that T is invertible. 2
- 4. Let $T: (C^1[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$ be the linear transformation defined by T(f) = f'. Denote $M = \{f \in C^1[0,1] : f(0) = 0\}$. Show that T(M) is a closed subspace of $(C[0,1], \|\cdot\|_{\infty})$.

END