DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA543: Functional Analysis Instructor: Rajesh Srivastava Time duration: Two hours Mid Semester Exam September 17, 2019 Maximum Marks: 30

1

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) If A is closed proper subspace of a normed linear space X, does it imply interior of A is empty? $\boxed{1}$
 - (b) Whether the set $\{x \in l^{\infty} : \|x\|_1 < 1\}$ is separable in l^{∞} ?
 - (c) Is it possible that the quotient space l^{∞}/c_o contains a Schauder basis?
- 2. Show that $X = \{(x_n) \in l^1 : \sum_{n=1}^{\infty} n |x_n| < \infty\}$ is a proper dense subspace of l^1 .
- 3. Let A be nonempty subset of a normed linear space X and $d(x, A) = \inf_{a \in A} ||x a||$. Show that $\overline{A} = A \cup \{x \in X : d(x, A) = 0\}$.
- 4. Find support of the function $f = \chi_{\left\{\frac{m}{2^n}: m \in \mathbb{Z}, \text{ and } n \in \mathbb{N}\right\}}$. Whether $\chi_{\text{supp f}} \in \mathcal{R}[0, 1]$? 2
- 5. Examine for convergence of the sequence $f_n(t) = \frac{1}{1+nt}$ to 0 in the normed linear space $(C[0,1], \|\cdot\|_1 + \|\cdot\|_\infty)$.
- 6. Find all possible $p \ge 1$ such that the sequence $f_n = \chi_{(\sqrt{n},\sqrt{n+1})} \to 0$ in $L^p(\mathbb{R})$. Does the series $\sum_{n=1}^{\infty} f_n$ converge in $L^p(\mathbb{R})$ for some p > 1?
- 7. Let c be the space of all convergence sequences on \mathbb{C} . Prove that the quotient norm on c/c_o is given by $\|(\widetilde{x_n})\| = \lim_{n \to \infty} |x_n|$. Further deduce that $c/c_o \cong \mathbb{C}$.
- 8. Show that $\{f \in L^{\infty}[0,1]: \int_{0}^{1} f(t)dt = 0\}$ is an infinite dimensional closed subspace of $L^{\infty}[0,1]$.
- 9. Let $1 \leq p < \infty$. For Lebesgue measurable function f on [0,1], define $||f||_p = \left(\int_0^1 |f(t)|^p dt\right)^{\frac{1}{p}}$. Show that $||\cdot||_1$ and $||\cdot||_2$ are not equivalent.

END