DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: One hour Quiz II November 11, 2021 Maximum Marks: 10

N.B. Answer without proper justification will attract zero mark.

- 1. (a) For $x \in \mathbb{R}$, define $f(x) = \frac{\sin x}{x}$ if $x \neq 0$ and f(0) = 1. What is the Lebesgue measure of the set $\bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) = \frac{1}{n}\}$?
 - (b) Define a sequence of function on \mathbb{R} by $f_n = e^{-x} \chi_{\left(\frac{1}{n}, n\right)}$, where $n \in \mathbb{N}$. Whether f_n increases uniformly to a Lebesgue integrable function on \mathbb{R} ? 1
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be such that f is Lebesgue measurable on (n, n+1) for every $n \in \mathbb{Z}$. Show that f is Lebesgue measurable on \mathbb{R} .
- 3. Let (X, S) be a measure space. Let $f : X \to \mathbb{R}$ be a S-measurable function and $g : \mathbb{R} \to \mathbb{R}$ be differentiable. Show that $g' \circ f$ is S-measurable function. 2

4. Let
$$f \in L^1(\mathbb{R}, M, m)$$
. Evaluative $\lim_{n \to \infty} \int_{\mathbb{R}} e^{-nx^2} f(x) dm(x)$. 2

5. Let (X, S, μ) be a finite measure space on the finite set X. Show that $L^1(X, S, \mu)$ is a finite dimensional linear space. 2

END