DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: One hour Quiz I September 17, 2021 Maximum Marks: 10

1

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let *E* be a subset of \mathbb{R} such that $m^*(E) = 0$. Does it imply that *E* is contained in a Borel set *B* with $m^*(B) = 0$?
 - (b) For $A \subseteq \mathbb{R}$, define $\mu_o(A) = \begin{cases} 0 & \text{if } A \text{ is a compact subset of } \mathbb{R}, \\ 1 & \text{if } A \text{ is a non-compact subset of } \mathbb{R}. \end{cases}$ Whether μ_o is a pre-measure on $\mathcal{B}(\mathbb{R})$ (Borel σ -algebra)?
- 2. $\overline{\mathcal{A}} = \{E \cap N : E \in \mathcal{A} \text{ and } N \subseteq F \in \mathcal{A} \text{ with } m(F) = 0\}.$
- 3. Let μ^* be an outer measure on a non-empty set X. Let $F = \{A \subseteq \mathbb{R} : \mu^*(A) = 0\}$. Find the σ -algebra generated by F.
- 4. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of disjoint open sets in \mathbb{R} . Then show that $m^*(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m^*(A_n)$.
- 5. Let E be a subset of \mathbb{R} . If for every $\epsilon > 0$ there exists a closed interval \tilde{I} of finite length containing E such that $m^*(\tilde{I} \setminus E) < \epsilon$. Then show that E is Lebesgue measurable.
- 6. Let μ^* be an outer measure generated by a pre-measure μ_o on an algebra \mathcal{A} on \mathbb{R} . Let E be μ^* measurable (in Caratheodory's sense). Show that there exists a set $G \in \sigma(\mathcal{A})$ such that $\mu^*(E) = \mu^*(G)$.

END