DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: Three hours End Semester Exam November 20, 2021 Maximum Marks: 35

1

1

6

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Let F(x, y) = f(x)f(y), where $f \in L^1(\mathbb{R})$ and $g \in L^\infty(\mathbb{R})$. Does it imply that F is finite a.e. $m \times m$?
 - (b) $f(x) = \min\left\{1, \frac{1}{x^2}\right\}$. Whether $f \in L^1(\mathbb{R})$?
 - (c) Suppose $f_1, f_1 : \mathbb{R} \to [0, \infty)$ are such that $\operatorname{supp} f_1 \cap \operatorname{supp} f_2 = \emptyset$. Does it imply that $\max\{f_1, f_2\} = f_1 + f_2$?
 - (d) Whether $\{(x, y) \in \mathbb{R}^2 : y = \sin \frac{1}{x}\}$ is belonging to $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$?
- 2. For $E, F \in M(\mathbb{R})$, define $h(y) = \int_{\mathbb{R}} \chi_E(x)\chi_F(x-y)dx$. Show that h is a Borel measurable function on \mathbb{R} .
- 3. Let $T: L^1(\mathbb{R}) \to L^1(\mathbb{R})$ be defined by $T(f)(x) = \int_{\mathbb{R}} \frac{f(x+y)}{1+y^2} dy$. Show that T is bounded and $||T|| = \pi$.
- 4. Suppose $f \to f$ in $L^p(\mathbb{R})$ for $1 \le p < \infty$. Let $g_n \in L^\infty(\mathbb{R})$ and $||g_n|| \le 1$. If g_n converges to g uniformly a.e., then $f_n g_n \to fg$ in $L^p(\mathbb{R})$.
- 5. Let $|f_n| \leq g \in L^1(\mathbb{R})$. Let f_{n_k} be subsequence of f_n such that $f_{n_k} \to f$ point wise a.e. on \mathbb{R} . If $\lim_{k \to \infty} ||f_{n_k} f|| = \overline{\lim_n} ||f_n f||_1 < \infty$. Show that $f_n \to f$ in $L^1(\mathbb{R})$.
- 6. Let $f_n = 1 + n\chi_{\left(\frac{1}{n+1}, \frac{1}{n}\right)}$ and f = 1 a.e. on (0, 1). Show that $\int_{(0,1)} f_n \to \int_{(0,1)} f$. Further, show that there does not exist $g \in L^1([0, 1])$ such that $f_n \leq g$ for every $n \in \mathbb{N}$.
- 7. Let $f_n: (0,1) \to \mathbb{R}$ be defined by $f_n(x) = \sqrt{n |\sin \frac{1}{nx}|}$. Evaluate $\lim_{n \to \infty} \int_{(0,1)} f_n(x) dx$. 4
- 8. Let X = Y = [0, 1]. Construct a sequence of functions f_n such that $\operatorname{supp} f_n \subseteq \left(\frac{1}{n+1}, \frac{1}{n}\right)$ and $\int_{(0,1)} f_n(x) ds = 1$. Let $f(x, y) = \int_0^1 \sum_{n=1}^\infty [f_n(x) - f_{n+1(x)}] f_n(y) dx$. Show that

$$\int_{0}^{1} \int_{0}^{1} f(x, y) dx dy \neq \int_{0}^{1} \int_{0}^{1} f(x, y) dy dx.$$

Does $f \in L^1([0,1] \times [0,1], M \otimes M, m \times m)$?

9. Let
$$f(x) = \frac{1}{\sqrt{|x|(1+\log^2 |x|)}}$$
, if $x \neq 0$. Show that $f \in L^2(\mathbb{R})$. Whether $f \in L^1(\mathbb{R})$? 4