DEPARTMENT OF MATHEMATICS Indian Institute of Technology Guwahati

MA550: Measure Theory Instructor: Rajesh Srivastava Time duration: Two hours Mid Semester Exam September 20, 2021 Maximum Marks: 25

N.B. Answer without proper justification will attract zero mark.

- 1. (a) Recall that the Cantor can be expressed as $\bigcap_{n=1}^{\infty} C_n$, where C_n is the union of 2^n disjoint closed intervals each of length 3^{-n} . Whether diameter $(C_n) \to 0$?
 - (b) Let $A = \bigcup_{n=1}^{\infty} I_n$, where I_n 's are open intervals. If there exists $\epsilon > 0$ such that $d(I_n, I_m) \ge \epsilon$ for $m \ne n$. Does it imply that m(boundary(A)) = 0?
- 2. Let C be the Cantor set in [0, 1]. Show that $C + (a, \infty)$ is a Lebesgue measurable subset of \mathbb{R} for every choice of a > 0.
- 3. Let \mathcal{A} be a σ -algebra of on \mathbb{R} . Write $\overline{\mathcal{A}} = \{E \cup N : E \in \mathcal{A} \text{ and } N \subseteq F \in \mathcal{A} \text{ with } m(F) = 0\}$. Show that $\overline{\mathcal{A}}$ is a σ -algebra. Further, deduce that $\overline{B(\mathbb{R})} = M(\mathbb{R})$.
- 4. Let A be a non-empty bounded subset of \mathbb{R} . Define $A_n = \{x \in \mathbb{R} : d(x, A) < \frac{1}{n}\}$. Show that $\lim_{n \to \infty} m(A_n) < \infty$. Whether A should be necessarily Lebesgue measurable for the above conclusion to hold?
- 5. For Lebesgue measurable subsets A and B of [0, 1], define a function f on [0, 1] by f(x) = d(x, A + B). If $m(A)m(B) > \frac{1}{4}$, then show that f(1) = 0.
- 6. Let A be a subset of \mathbb{R} such that $m^*(A \cup B) = m^*(A) + m^*(B)$ for every subset B of \mathbb{R} . Show that A is Lebesgue measurable. Further, if $m(A) < \infty$, then show that m(A) = 0.
- 7. Let A be a subset of \mathbb{R} such that $m^*(A) < \infty$. Show that for each $\epsilon > 0$ there exists a compact set $K \subset \mathbb{R}$ such that $m^*(A \smallsetminus K) < \epsilon$.
- 8. Let (X, S, μ) be a finite measure space. For a sequence of sets $A_n \in S$, if we define $\overline{\lim}A_n = \bigcap_{k \ge 1} (\bigcup_{n \ge k} A_n)$, then show that $\mu(\overline{\lim}A_n) \ge \overline{\lim} \mu(A_n)$.
- 9. Let (X, τ) be a topological space. Let $\mathcal{B}(X)$ be the σ -algebra generated by τ . Let μ^* be the outer measure generated by a σ -finite pre-measure μ_o on $\mathcal{B}(X)$. Show that $E \in M_{\mu^*}$ if and only if there exists $G \in \mathcal{B}(X)$ such that $\mu^*(G \smallsetminus E) = 0$.

END