MA 101 (Mathematics I)

Practice Problem Set - 1

- 1. State TRUE or FALSE giving proper justification for each of the following statements.
 - (a) If both (x_n) and (y_n) are unbounded sequences in \mathbb{R} , then the sequence $(x_n y_n)$ cannot be convergent.
 - (b) If both (x_n) and (y_n) are increasing sequences in \mathbb{R} , then the sequence $(x_n y_n)$ must be increasing.
 - (c) If (x_n) , (y_n) are sequences in \mathbb{R} such that (x_n) is convergent and (y_n) is not convergent, then the sequence $(x_n + y_n)$ cannot be convergent.
 - (d) A monotonic sequence (x_n) in \mathbb{R} is convergent iff the sequence (x_n^2) is convergent.
 - (e) If (x_n) is an unbounded sequence of nonzero real numbers, then the sequence $(\frac{1}{x_n})$ must converge to 0.
 - (f) If $x_n = (1 \frac{1}{n}) \sin \frac{n\pi}{2}$ for all $n \in \mathbb{N}$, then the sequence (x_n) is not convergent although it has a convergent subsequence.
 - (g) If both the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ of real numbers are convergent, then the series $\sum_{n=1}^{\infty} x_n y_n$ must be convergent.
 - (h) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and f(x) > 0 for all $x \in \mathbb{Q}$, then it is necessary that f(x) > 0for all $x \in \mathbb{R}$.
 - (i) There exists a continuous function from (0, 1) onto $(0, \infty)$.
 - (j) There exists a continuous function from [0, 1] onto (0, 1).
 - (k) There exists a continuous function from (0, 1) onto [0, 1].
 - (1) If $f : \mathbb{R} \to \mathbb{R}$ is continuous and bounded, then there must exist $c \in \mathbb{R}$ such that f(c) = c.
 - (m) If both $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuous at 0, then the composite function $g \circ f : \mathbb{R} \to \mathbb{R}$ must be continuous at 0.
 - (n) If $f : \mathbb{R} \to \mathbb{R}$ is not differentiable at $x_0 \in \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ is not differentiable at $f(x_0)$, then $g \circ f : \mathbb{R} \to \mathbb{R}$ cannot be differentiable at x_0 .
 - (o) If $f : \mathbb{R} \to \mathbb{R}$ is such that $\lim_{h \to 0} \frac{f(x+h) f(x-h)}{h}$ exists (in \mathbb{R}) for every $x \in \mathbb{R}$, then f must be differentiable on \mathbb{R} .
- 2. Using the definition of convergence of sequence, examine whether the following sequences are convergent.
 - (a) $(n + \frac{3}{2})$
 - (b) $\left(\left(-1\right)^{n}\frac{3}{n+2}\right)$
 - (c) $\left((-1)^n (1 \frac{1}{n}) \right)$
 - (d) $\left(\frac{3n^2 + \sin n 4}{2n^2 + 3}\right)$ (e) $\left(\frac{2\sqrt{n+3n}}{2n+3}\right)$
- 3. Examine whether the sequences (x_n) defined as below are convergent. Also, find their limits if they are convergent.
 - (a) $x_n = (a^n + b^n + c^n)^{\frac{1}{n}}$ for all $n \in \mathbb{N}$, where a, b, c are distinct positive real numbers.

 - (b) $x_n = \frac{1-n+(-1)^n}{2n+1}$ for all $n \in \mathbb{N}$. (c) $x_n = \frac{n^k}{\alpha^n}$, where $|\alpha| > 1$ and k > 0.
 - (d) $x_n = \frac{\tilde{p}(n)}{2^n}$ for all $n \in \mathbb{N}$, where p(x) is a polynomial in the real variable x of degree 5.

(e)
$$x_n = \frac{3.5.7.\dots.(2n+1)}{2.5.8.\dots.(3n-1)}$$
 for all $n \in \mathbb{N}$.

(f)
$$x_n = \frac{1}{n} \sin^2 n$$
 for all $n \in \mathbb{N}$.

(g)
$$x_n = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2}$$
 for all $n \in \mathbb{N}$.

(h)
$$x_n = \frac{n}{n^3+1} + \frac{2n}{n^3+2} + \dots + \frac{n}{n^3+n}$$
 for all $n \in \mathbb{N}$

- (i) $x_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n+1}}$ for all $n \in \mathbb{N}$. (j) $x_n = \frac{1}{\sqrt{n}} (\frac{1}{\sqrt{1+\sqrt{3}}} + \frac{1}{\sqrt{3+\sqrt{5}}} + \dots + \frac{1}{\sqrt{2n-1}+\sqrt{2n+1}})$ for all $n \in \mathbb{N}$. (k) $x_n = (\frac{\sin n + \cos n}{3})^n$ for all $n \in \mathbb{N}$. (l) $x_n = \sqrt{4n^2 + n} - 2n$ for all $n \in \mathbb{N}$. (m) $x_n = \sqrt{n^2 + n} - \sqrt{n^2 + 1}$ for all $n \in \mathbb{N}$. (n) $x_1 = 1$ and $x_{n+1} = 1 + \sqrt{x_n}$ for all $n \in \mathbb{N}$. (o) $x_1 = 4$ and $x_{n+1} = 3 - \frac{2}{x_n}$ for all $n \in \mathbb{N}$. (p) $x_1 = 0$ and $x_{n+1} = \sqrt{6 + x_n}$ for all $n \in \mathbb{N}$. (q) $x_1 > 1$ and $x_{n+1} = \sqrt{x_n}$ for all $n \in \mathbb{N}$.
- 4. Let (x_n) , (y_n) be sequences in \mathbb{R} such that $x_n \to x \in \mathbb{R}$ and $y_n \to y \in \mathbb{R}$. Show that $\lim_{n \to \infty} \max\{x_n, y_n\} = \max\{x, y\}.$
- 5. If a sequence (x_n) of positive real numbers converges to $\ell \in \mathbb{R}$, then show that $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{\ell}$.
- 6. Let (x_n) be a convergent sequence in \mathbb{R} with $\lim_{n \to \infty} x_n = \ell \neq 0$. Show that there exists $n_0 \in \mathbb{N}$ such that $x_n \neq 0$ for all $n \geq n_0$.
- 7. If $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$ for all $n \in \mathbb{N}$, then show that the sequence (x_n) is convergent.
- 8. Show that the sequences (x_n) in R defined as below are Cauchy (and hence convergent). Also, find their limits.
 (a) x₁ = 1 and x_{n+1} = ^{2+x_n}/_{1+x_n} for all n ∈ N.
 (b) x₁ > 0 and x_{n+1} = 2 + ¹/_{x_n} for all n ∈ N.
- 9. Examine whether the sequence (x_n) has a convergent subsequence, where for each $n \in \mathbb{N}$, (a) $x_n = (-1)^n n^2$ (b) $x_n = (-1)^n \frac{5n \sin^3 n}{3n-2}$.
- 10. If $a, b \in \mathbb{R}$, then show that the series $a + (a+b) + (a+2b) + \cdots$ is not convergent unless a = b = 0.
- 11. Examine whether the following series are convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(b) $\sum_{n=1}^{\infty} \frac{(2n)!}{n^n}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$
(d) $\sum_{n=1}^{\infty} \sqrt{\frac{2n^2+3}{5n^3+1}}$
(e) $\sum_{n=1}^{\infty} \frac{n^n}{2^{n^2}}$
(f) $\sum_{n=1}^{\infty} ((n^3+1)^{\frac{1}{3}}-n)$
(g) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$
(h) $\sum_{n=1}^{\infty} (\frac{n}{n+1})^{n^2}$
(i) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n+1}$

- 12. Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ is convergent.
- 13. Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{(x+2)^n}{3^n \sqrt{2n+1}}$ is convergent.
- 14. Show that the series $\sum_{n=1}^{\infty} \frac{a^n}{a^n+n}$ is convergent if 0 < a < 1 and is not convergent if a > 1.
- 15. If $0 < x_n < \frac{1}{2}$ for all $n \in \mathbb{N}$ and if the series $\sum_{n=1}^{\infty} x_n$ converges, then show that the series $\sum_{n=1}^{\infty} \frac{x_n}{1-x_n}$ converges.
- 16. Let (x_n) , (y_n) be sequences in \mathbb{R} such that $|x_n| \leq |y_n|$ for all $n \in \mathbb{N}$. Find out (with justification) the true statement(s) from the following.
 - (a) If the series $\sum_{n=1}^{\infty} y_n$ converges, then the series $\sum_{n=1}^{\infty} x_n$ must converge.
 - (b) If the series $\sum_{\substack{n=1\\\infty}}^{n-1} x_n$ converges, then the series $\sum_{n=1}^{n-1} y_n$ must converge.
 - (c) If the series $\sum_{n=1}^{\infty} y_n$ converges absolutely, then the series $\sum_{n=1}^{\infty} x_n$ must converge absolutely. (d) If the series $\sum_{n=1}^{\infty} y_n$ converges absolutely, then the series $\sum_{n=1}^{\infty} x_n$ must converge absolutely.
 - (d) If the series $\sum_{n=1}^{\infty} x_n$ converges absolutely, then the series $\sum_{n=1}^{\infty} y_n$ must converge absolutely.

17. If a series $\sum_{n=1}^{\infty} x_n$ is convergent but the series $\sum_{n=1}^{\infty} x_n^2$ is not convergent, then show that the series $\sum_{n=1}^{\infty} x_n$ is conditionally convergent.

- 18. Examine whether the following series are conditionally convergent.
 - (a) $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n^2 + 1} n)$ (b) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + (-1)^n}$ (c) $\sum_{n=1}^{\infty} (-1)^n \frac{a^2 + n}{n^2}$, where $a \in \mathbb{R}$

19. Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{\log(n+1)}{\sqrt{n+1}} (x-5)^n$ is convergent.

- 20. Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{(-1)^n (x+3)^n}{n5^n}$ is conditionally convergent.
- 21. Let $f, g: \mathbb{R} \to \mathbb{R}$ be such that $|f(x)| \leq |g(x)|$ for all $x \in \mathbb{R}$. If g is continuous at 0 and g(0) = 0, then show that f is continuous at 0.
- 22. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$ Examine whether f is continuous at 0.
- 23. Give an example (with justification) of a function $f : \mathbb{R} \to \mathbb{R}$ which is discontinuous at every point of \mathbb{R} but $|f| : \mathbb{R} \to \mathbb{R}$ is continuous.
- 24. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous such that $f(x) = x^2 + 5$ for all $x \in \mathbb{Q}$. Find $f(\sqrt{2})$.
- 25. Evaluate $\lim_{n \to \infty} \sin((2n\pi + \frac{1}{2n\pi})\sin(2n\pi + \frac{1}{2n\pi})).$

26. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous such that f(0) > f(1) < f(2). Show that f is not one-one.

27. Let $f: [0,1] \to [0,1]$ be continuous. Show that there exists $c \in [0,1]$ such that $f(c) + 2c^5 = 3c^7$.

28. Show that there exists $c \in \mathbb{R}$ such that $c^{179} + \frac{163}{1+c^2+\sin^2 c} = 119$.

- 29. Let $f, g: [-1,1] \to \mathbb{R}$ be continuous such that $|f(x)| \leq 1$ for all $x \in [-1,1]$ and g(-1) = -1, g(1) = 1. Show that there exists $c \in [-1,1]$ such that f(c) = g(c).
- 30. Let $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Show that
 - (a) if n is odd, then there exists unique $y \in \mathbb{R}$ such that $y^n = x$.
 - (b) if n is even and x > 0, then there exists unique y > 0 such that $y^n = x$.
- 31. If $f:[0,1] \to \mathbb{R}$ is continuous and f(x) > 0 for all $x \in [0,1]$, then show that there exists $\alpha > 0$ such that $f(x) > \alpha$ for all $x \in [0,1]$.
- 32. Give an example of each of the following.
 - (a) A function $f : [0, 1] \to \mathbb{R}$ which is not bounded.
 - (b) A continuous and bounded function $f : \mathbb{R} \to \mathbb{R}$ which does not attain $\sup\{f(x) : x \in \mathbb{R}\}$ as well as $\inf\{f(x) : x \in \mathbb{R}\}$.
 - (c) A continuous and bounded function $f : (0, 1) \to \mathbb{R}$ which attains both $\sup\{f(x) : x \in (0, 1)\}$ and $\inf\{f(x) : x \in (0, 1)\}$.
- 33. If $f(x) = x \sin x$ for all $x \in \mathbb{R}$, then show that $f : \mathbb{R} \to \mathbb{R}$ is neither bounded above nor bounded below.
- 34. Let p be an nth degree polynomial with real coefficients in one real variable such that $n \neq 0$ is even and $p(0) \cdot p^{(n)}(0) < 0$. Show that p has at least two real zeroes.
- 35. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous at 0 and let g(x) = xf(x) for all $x \in \mathbb{R}$. Show that $g : \mathbb{R} \to \mathbb{R}$ is differentiable at 0.
- 36. Let $\alpha > 1$ and let $f : \mathbb{R} \to \mathbb{R}$ satisfy $|f(x)| \le |x|^{\alpha}$ for all $x \in \mathbb{R}$. Show that f is differentiable at 0.
- 37. Let $f(x) = x^2 |x|$ for all $x \in \mathbb{R}$. Examine the existence of f'(x), f''(x) and f'''(x), where $x \in \mathbb{R}$.
- 38. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 |\cos \frac{\pi}{x}| & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$ Examine whether f is differentiable (i) at 0 (ii) on (0, 1).
- 39. Examine whether $f : \mathbb{R} \to \mathbb{R}$, defined as below, is differentiable at 0. (a) $f(x) = \begin{cases} \frac{1}{2^{n+1}} & \text{if } x = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$ (b) $f(x) = \begin{cases} \frac{1}{4^n} & \text{if } x = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$

40. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable at 0 and f(0) = f'(0) = 0. Show that $g : \mathbb{R} \to \mathbb{R}$, defined by $g(x) = \begin{cases} f(x) \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$ is differentiable at 0.

- 41. Let $f(x) = x^3 + x$ and $g(x) = x^3 x$ for all $x \in \mathbb{R}$. If f^{-1} denotes the inverse function of f and if $(g \circ f^{-1})(x) = g(f^{-1}(x))$ for all $x \in \mathbb{R}$, then find $(g \circ f^{-1})'(2)$.
- 42. If $a, b, c \in \mathbb{R}$, then show that the equation $4ax^3 + 3bx^2 + 2cx = a + b + c$ has at least one root in (0, 1).
- 43. If $a_0, a_1, \dots, a_n \in \mathbb{R}$ satisfy $\frac{a_0}{1.2} + \frac{a_1}{2.3} + \dots + \frac{a_n}{(n+1)(n+2)} = 0$, then show that the equation $a_0 + a_1x + \dots + a_nx^n = 0$ has at least one root in [0, 1].
- 44. Show that the equation $|x^{10} 60x^9 290| = e^x$ has at least one real root.
- 45. Find the number of (distinct) real roots of the following equations.
 (a) x² = cos x
 (b) e^{2x} + cos x + x = 0
- 46. Let $f : \mathbb{R} \to \mathbb{R}$ be twice differentiable such that f(0) = 0, f'(0) > 0 and f''(x) > 0 for all $x \in \mathbb{R}$. Show that the equation f(x) = 0 has no positive real root.
- 47. Show that between any two (distinct) real roots of the equation $e^x \sin x = 1$, there exists at least one real root of the equation $e^x \cos x + 1 = 0$.
- 48. Let $f(x) = 3x^5 2x^3 + 12x 8$ for all $x \in \mathbb{R}$. Show that $f : \mathbb{R} \to \mathbb{R}$ is one-one and onto.
- 49. Show that
 - (a) $\frac{x-1}{x} < \log x < x-1$ for all $x \neq 1 > 0$.
 - (b) $1 + x < e^x < 1 + xe^x$ for all $x \neq 0 \in \mathbb{R}$.
 - (c) $2\sin x + \tan x > 3x$ for all $x \in (0, \frac{\pi}{2})$.
 - (d) $(1+x)^{\alpha} \ge 1 + \alpha x$ for all $x \ge -1$ and for all $\alpha > 1$.
- 50. Determine all the differentiable functions $f: [0,1] \to \mathbb{R}$ satisfying the conditions (a) f(0) = 0, f(1) = 1 and $|f'(x)| \le \frac{1}{2}$ for all $x \in [0,1]$. (b) f(0) = 0, f(1) = 1 and $|f'(x)| \le 1$ for all $x \in [0,1]$.
- 51. Let $f : [0,2] \to \mathbb{R}$ be differentiable and f(0) = f(1) = 0, f(2) = 3. Show that there exist $a, b, c \in (0,2)$ such that f'(a) = 0, f'(b) = 3 and f'(c) = 1.
- 52. Evaluate the following limits.

(a)
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

(b)
$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x}$$

(c)
$$\lim_{x \to \infty} x \left(\log(1 + \frac{x}{2}) - \log \frac{x}{2} \right)$$

(d)
$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}$$

(e)
$$\lim_{x \to \infty} \frac{2x + \sin 2x + 1}{(2x + \sin 2x)(\sin x + 3)^2}$$

53. If $f:(0,\infty) \to (0,\infty)$ is differentiable at $a \in (0,\infty)$, then evaluate $\lim_{x \to a} \left(\frac{f(x)}{f(a)}\right)^{\frac{1}{\log x - \log a}}$.

- 54. Let $f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \in \mathbb{R}, \\ 1 & \text{if } x = 0. \end{cases}$ Examine whether $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable.
- 55. Using Taylor's theorem, show that
 - (a) $|\sqrt{1+x} (1+\frac{x}{2}-\frac{x^2}{8})| \le \frac{1}{2}|x|^3$ for all $x \in (-\frac{1}{2}, \frac{1}{2})$. (b) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} > \cos x > 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$ for all $x \in (0,\pi)$. (c) $x - \frac{x^3}{3!} < \sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!}$ for all $x \in (0,\pi)$.

56. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} n! x^n$.

- 57. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{n}$.
- 58. Let $f : [a,b] \to \mathbb{R}$ be a bounded function. If there is a partition P of [a,b] such that L(f,P) = U(f,P), then show that f is a constant function.
- 59. Evaluate the following limits.

(a)
$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \sqrt{n^2 - k^2}$$

(b)
$$\lim_{n \to \infty} \frac{1}{n} [(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}}$$

(c)
$$\lim_{x \to 0} \frac{x}{1 - e^{x^2}} \int_0^x e^{t^2} dt$$

(d)
$$\lim_{n \to \infty} \left(\frac{1^8 + 3^8 + \dots + (2n-1)^8}{n^9} \right)$$

60. If $f: [-1,1] \to \mathbb{R}$ is continuously differentiable, then evaluate $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f'(\frac{k}{3n})$.

61. Show that

(a)
$$\frac{\pi^2}{9} \le \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} \, dx \le \frac{2\pi^2}{9}.$$

(b) $\frac{\sqrt{3}}{8} \le \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx \le \frac{\sqrt{2}}{6}.$

62. If $f : [a, b] \to \mathbb{R}$ is continuous, then show that there exists $c \in [a, b]$ such that $\int_{a}^{b} f(x) dx = (b-a)f(c)$. (This result is called the mean value theorem of Riemann integrals.)

63. Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ be continuous and let $g(x) \ge 0$ for all $x \in [a, b]$. Show that there exists $c \in [a, b]$ such that $\int_{a}^{b} f(x)g(x) dx = f(c) \int_{a}^{b} g(x) dx$.

(This result is called the generalized mean value theorem of Riemann integrals.)

64. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and let $g(x) = \int_{0}^{x} (x-t)f(t) dt$ for all $x \in \mathbb{R}$. Show that g''(x) = f(x) for all $x \in \mathbb{R}$.

- 65. Let $f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1, \\ 0 & \text{if } 1 < x \le 2, \end{cases}$ and let $F(x) = \int_{0}^{x} f(t) dt$ for all $x \in [0, 2]$. Is $F : [0, 2] \to \mathbb{R}$ differentiable? Justify.
- 66. If $f: [0,1] \to [0,1]$ is continuous, then show that the equation $2x \int_{0}^{x} f(t) dt = 1$ has exactly one root in [0,1].
- 67. Examine whether the following improper integrals are convergent.
 - (a) $\int_{0}^{\infty} e^{-t^2} dt$ (b) $\int_{-\infty}^{\infty} t e^{-t^2} dt$ (c) $\int_{0}^{1} \frac{dt}{\sqrt{t-t^2}}$
- 68. Determine all real values of p for which the integral $\int_{1}^{\infty} t^{p} e^{-t} dt$ converges.
- 69. Find the area of the region enclosed by the curve $y = \sqrt{|x+1|}$ and the line 5y = x+7.
- 70. The region bounded by the parabola $y = x^2 + 1$ and the line y = x + 3 is revolved about the x-axis to generate a solid. Find the volume of the solid.
- 71. The region bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ (where a > 0) is revolved about the x-axis to generate a solid. Find the volume of the solid.
- 72. Find the area of the region that is inside the circle $r = 2\cos\theta$ and outside the cardioid $r = 2(1 \cos\theta)$.
- 73. Find the area of the region which is inside both the cardioids $r = a(1+\cos\theta)$ and $r = a(1-\cos\theta)$, where a > 0.
- 74. Consider the funnel formed by revolving the curve $y = \frac{1}{x}$ about the *x*-axis, between x = 1 and x = a, where a > 1. If V_a and S_a denote respectively the volume and the surface area of the funnel, then show that $\lim_{a \to \infty} V_a = \pi$ and $\lim_{a \to \infty} S_a = \infty$.