MA 101 (Mathematics I)

Practice Problem Set - 2

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) If $\left(x_{n}\right)$ is a sequence in \mathbb{R} which converges to 0 , then the sequence $\left(x_{n}^{n}\right)$ must converge to 0 .
(b) There exists a non-convergent sequence $\left(x_{n}\right)$ in \mathbb{R} such that the sequence $\left(x_{n}+\frac{1}{n} x_{n}\right)$ is convergent.
(c) There exists a non-convergent sequence $\left(x_{n}\right)$ in \mathbb{R} such that the sequence $\left(x_{n}^{2}+\frac{1}{n} x_{n}\right)$ is convergent.
(d) If $\left(x_{n}\right)$ is a sequence of positive real numbers such that the sequence $\left((-1)^{n} x_{n}\right)$ converges to $\ell \in \mathbb{R}$, then ℓ must be equal to 0 .
(e) If an increasing sequence $\left(x_{n}\right)$ in \mathbb{R} has a convergent subsequence, then $\left(x_{n}\right)$ must be convergent.
(f) If $\left(x_{n}\right)$ is a sequence of positive real numbers such that $\lim _{n \rightarrow \infty}\left(n^{\frac{3}{2}} x_{n}\right)=\frac{3}{2}$, then the series $\sum_{n=1}^{\infty} x_{n}$ must be convergent.
(g) If $\left(x_{n}\right)$ is a sequence of positive real numbers such that the series $\sum_{n=1}^{\infty} n^{2} x_{n}^{2}$ converges, then the series $\sum_{n=1}^{\infty} x_{n}$ must converge.
(h) If $\left(x_{n}\right)$ is a sequence in \mathbb{R} such that the series $\sum_{n=1}^{\infty} x_{n}^{3}$ is convergent, then the series $\sum_{n=1}^{\infty} x_{n}^{4}$ must be convergent.
(i) If $\left(x_{n}\right)$ is a sequence of positive real numbers such that the series $\sum_{n=1}^{\infty} x_{n}^{3}$ is convergent, then the series $\sum_{n=1}^{\infty} x_{n}^{4}$ must be convergent.
(j) If $\left(x_{n}\right)$ is a sequence of positive real numbers such that the series $\sum_{n=1}^{\infty} x_{n}^{4}$ is convergent, then the series $\sum_{n=1}^{\infty} x_{n}^{3}$ must be convergent.
(k) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at both 2 and 4 , then f must be continuous at some $c \in(2,4)$.
(l) There exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \in \mathbb{Q}$ for all $x \in \mathbb{R} \backslash \mathbb{Q}$ and $f(x) \in \mathbb{R} \backslash \mathbb{Q}$ for all $x \in \mathbb{Q}$.
(m) If $f:[1,2] \rightarrow \mathbb{R}$ is a differentiable function, then the derivative f^{\prime} must be bounded on [1,2].
(n) If $f:[0, \infty) \rightarrow \mathbb{R}$ is differentiable such that $f(0)=0=\lim _{x \rightarrow \infty} f(x)$, then there must exist $c \in(0, \infty)$ such that $f^{\prime}(c)=0$.
(o) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then for each $c \in \mathbb{R}$, there must exist $a, b \in \mathbb{R}$ with $a<c<b$ such that $f(b)-f(a)=(b-a) f^{\prime}(c)$.
(p) The function $f: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f(x)=x+\sin x$ for all $x \in \mathbb{R}$, is strictly increasing on \mathbb{R}.
(q) There exists an infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{(n)}(0)=n^{3}-5 n+2$ for all $n \geq 0$.
(r) If $f:[0,1] \rightarrow \mathbb{R}$ is a bounded function such that $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$ exists (in \mathbb{R}), then f must be Riemann integrable on $[0,1]$.
2. Examine whether the sequences $\left(x_{n}\right)$ defined as below are convergent. Also, find their limits if they are convergent.
(a) $x_{n}=\frac{1}{n^{2}}\left(a_{1}+\cdots+a_{n}\right)$, where $a_{n}=n+\frac{1}{n}$ for all $n \in \mathbb{N}$.
(b) $x_{n}=\left(n^{2}+1\right)^{\frac{1}{8}}-(n+1)^{\frac{1}{4}}$ for all $n \in \mathbb{N}$.
(c) $x_{n}=\left(n^{2}+n\right)^{\frac{1}{n}}$ for all $n \in \mathbb{N}$.
(d) $x_{n}=5^{n}\left(\frac{1}{n^{3}}-\frac{1}{n!}\right)$ for all $n \in \mathbb{N}$.
(e) $x_{n}=\frac{1}{1 . n}+\frac{1}{2 .(n-1)}+\frac{1}{3 .(n-2)}+\cdots+\frac{1}{n .1}$ for all $n \in \mathbb{N}$.
(f) $x_{n}=\frac{n}{3}-\left[\frac{n}{3}\right]$ for all $n \in \mathbb{N}$.
(g) $x_{1}=1$ and $x_{n+1}=\left(\frac{n}{n+1}\right) x_{n}^{2}$ for all $n \in \mathbb{N}$.
(h) $x_{1}=a, x_{2}=b$ and $x_{n+2}=\frac{1}{2}\left(x_{n}+x_{n+1}\right)$ for all $n \in \mathbb{N}$, where $a, b \in \mathbb{R}$.
(i) $0<x_{n}<1$ and $x_{n}\left(1-x_{n+1}\right)>\frac{1}{4}$ for all $n \in \mathbb{N}$.
3. Let $\left(x_{n}\right)$ be any non-constant sequence in \mathbb{R} such that $x_{n+1}=\frac{1}{2}\left(x_{n}+x_{n+2}\right)$ for all $n \in \mathbb{N}$. Show that $\left(x_{n}\right)$ cannot converge.
4. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} and let $y_{n}=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)$ for all $n \in \mathbb{N}$. If $\left(x_{n}\right)$ is convergent, then show that $\left(y_{n}\right)$ is also convergent.
If $\left(y_{n}\right)$ is convergent, is it necessary that $\left(x_{n}\right)$ is (i) convergent? (ii) bounded?
5. If $\left(x_{n}\right)$ is a sequence in \mathbb{R} such that $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=5$, then determine $\lim _{n \rightarrow \infty} \frac{x_{n}}{n}$.
6. If $x_{1}=\frac{3}{4}$ and $x_{n+1}=x_{n}-x_{n}^{n+1}$ for all $n \in \mathbb{N}$, then examine whether the sequence $\left(x_{n}\right)$ is convergent.
7. Let $a>0$ and let $x_{1}=0, x_{n+1}=x_{n}^{2}+a$ for all $n \in \mathbb{N}$. Show that the sequence $\left(x_{n}\right)$ is convergent iff $a \leq \frac{1}{4}$.
8. For $a \in \mathbb{R}$, let $x_{1}=a$ and $x_{n+1}=\frac{1}{4}\left(x_{n}^{2}+3\right)$ for all $n \in \mathbb{N}$. Examine the convergence of the sequence $\left(x_{n}\right)$ for different values of a. Also, find $\lim _{n \rightarrow \infty} x_{n}$ whenever it exists.
9. If $x_{n}=\left(1+\frac{1}{n}\right)^{n}$ and $y_{n}=\left(1+\frac{1}{n}\right)^{n+1}$ for all $n \in \mathbb{N}$, then show that the sequence $\left(x_{n}\right)$ is increasing, the sequence $\left(y_{n}\right)$ is decreasing and both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are bounded.
10. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. If for every $\varepsilon>0$, there exists a convergent sequence $\left(y_{n}\right)$ in \mathbb{R} such that $\left|x_{n}-y_{n}\right|<\varepsilon$ for all $n \in \mathbb{N}$, then show that $\left(x_{n}\right)$ is convergent.
11. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. Which of the following conditions ensure(s) that $\left(x_{n}\right)$ is a Cauchy sequence (and hence convergent)?
(a) $\lim _{n \rightarrow \infty}\left|x_{n+1}-x_{n}\right|=0$.
(b) $\left|x_{n+1}-x_{n}\right| \leq \frac{1}{n}$ for all $n \in \mathbb{N}$.
(c) $\left|x_{n+1}-x_{n}\right| \leq \frac{1}{n^{2}}$ for all $n \in \mathbb{N}$.
12. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} such that each of the subsequences $\left(x_{2 n}\right),\left(x_{2 n-1}\right)$ and $\left(x_{3 n}\right)$ converges. Show that $\left(x_{n}\right)$ is convergent.
13. Examine whether the following series are convergent.
(a) $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\log n}}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n}-n}{n^{2}}$
(c) $\sum_{n=1}^{\infty} \frac{\frac{1}{2}+(-1)^{n}}{n}$
(d) $\frac{1}{\sqrt{1}}-\frac{1}{2}+\frac{1}{\sqrt{3}}-\frac{1}{4}+\frac{1}{\sqrt{5}}-\frac{1}{6}+\cdots$
(e) $1+2 x+x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6}+2 x^{7}+\cdots$, where $x \in \mathbb{R}$
14. If $\left(x_{n}\right)$ is a sequence in \mathbb{R} such that $\lim _{n \rightarrow \infty} x_{n}=0$, then show that the series $\sum_{n=1}^{\infty} \frac{x_{n}}{x_{n}^{2}+n^{2}}$ is absolutely convergent.
15. Let the series $\sum_{n=1}^{\infty} x_{n}$ be convergent, where $x_{n}>0$ for all $n \in \mathbb{N}$. Examine whether the following series are convergent.
(a) $\sum_{n=1}^{\infty} \frac{\sqrt{x_{n}}}{n}$
(b) $\sum_{n=1}^{\infty} \frac{x_{n}+2^{n}}{x_{n}+3^{n}}$
16. If $\sum_{n=1}^{\infty} x_{n}$ is a convergent series, where $x_{n}>0$ for all $n \in \mathbb{N}$, then show that it is possible for the series $\sum_{n=1}^{\infty} \sqrt{\frac{x_{n}}{n}}$ to converge as well as not to converge.
17. Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} with $\lim _{n \rightarrow \infty} x_{n}=0$. Show that there exists a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that the series $\sum_{k=1}^{\infty} x_{n_{k}}$ is absolutely convergent.
18. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then show that there exist non-negative continuous functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f=g-h$.
19. Give an example (with justification) of a function from \mathbb{R} onto \mathbb{R} which is not continuous at any point of \mathbb{R}.
20. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. If f is continuous at 0 , then show that $f(x)=f(1) x$ for all $x \in \mathbb{R}$.
21. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous such that $f\left(\frac{1}{2}(x+y)\right)=\frac{1}{2}(f(x)+f(y))$ for all $x, y \in \mathbb{R}$. Show that there exist $a, b \in \mathbb{R}$ such that $f(x)=a x+b$ for all $x \in \mathbb{R}$.
22. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous such that for each $x \in \mathbb{Q}, f(x)$ is an integer. If $f\left(\frac{1}{2}\right)=2$, then find $f\left(\frac{1}{3}\right)$.
23. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous such that $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. Show that f is a constant function.
24. If $f:[0,1] \rightarrow \mathbb{R}$ is continuous, then show that
(a) there exist $a, b \in[0,1]$ such that $a-b=\frac{1}{2}$ and $f(a)-f(b)=\frac{1}{2}(f(1)-f(0))$.
(b) there exist $a, b \in[0,1]$ such that $a-b=\frac{1}{3}$ and $f(a)-f(b)=\frac{1}{3}(f(1)-f(0))$.
25. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. For $n \in \mathbb{N}$, let $x_{1}, \ldots, x_{n} \in[a, b]$ and let $\alpha_{1}, \ldots, \alpha_{n}$ be nonzero real numbers having same sign. Show that there exists $c \in[a, b]$ such that
$f(c) \sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)$.
(In particular, this shows that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if for $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in[a, b]$, then there exists $\xi \in[a, b]$ such that $\left.f(\xi)=\frac{1}{n}\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right).\right)$
26. Let $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ be continuous such that $\sup \{f(x): x \in[0,1]\}=$ $\sup \{g(x): x \in[0,1]\}$. Show that there exists $c \in[0,1]$ such that $f(c)=g(c)$.
27. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be continuous such that $\lim _{x \rightarrow 0+} f(x)=0$ and $\lim _{x \rightarrow \infty} f(x)=1$. Show that there exists $c \in(0, \infty)$ such that $f(c)=\frac{\sqrt{3}}{2}$.
28. Let $f:(a, b) \rightarrow \mathbb{R}$ be continuous. If both $\lim _{x \rightarrow a+} f(x)$ and $\lim _{x \rightarrow b-} f(x)$ exist (in \mathbb{R}), then show that f is bounded.
29. Consider the continuous function $f:(0,1] \rightarrow \mathbb{R}$, where $f(x)=1-(1-x) \sin \frac{1}{x}$ for all $x \in(0,1]$. Does there exist $x_{0} \in(0,1]$ such that $f\left(x_{0}\right)=\sup \{f(x): x \in(0,1]\}$? Justify.
30. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous such that $f(a)=f(b)$. Show that for each $\varepsilon>0$, there exist distinct $x, y \in[a, b]$ such that $|x-y|<\varepsilon$ and $f(x)=f(y)$.
31. Give an example (with justification) of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable only at 2 .
32. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(x)-f(y) \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Show that f is a constant function.
33. If $m, k \in \mathbb{N}$, then evaluate $\lim _{n \rightarrow \infty}\left(\frac{(n+1)^{m}+(n+2)^{m}+\cdots+(n+k)^{m}}{n^{m-1}}-k n\right)$.
34. Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ be differentiable at $c \in(a, b)$ such that $f(c)=g(c)$ and $f(x) \leq g(x)$ for all $x \in(a, b)$. Show that $f^{\prime}(c)=g^{\prime}(c)$.
35. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable such that $f(0)=f(1)=0$. Show that there exists $c \in(0,1)$ such that $f^{\prime}(c)=f(c)$.
36. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(0)=0$ and $f^{\prime}(x)>f(x)$ for all $x \in \mathbb{R}$. Show that $f(x)>0$ for all $x>0$.
37. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function such that $f(x) \neq 0$ for all $x \in[a, b]$. Show that there exists $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{f(c)}=\frac{1}{a-c}+\frac{1}{b-c}$.
38. Let $f:[0,1] \rightarrow \mathbb{R}$ be differentiable such that $f(0)=0$ and $f(1)=1$. Show that there exist $c_{1}, c_{2} \in[0,1]$ with $c_{1} \neq c_{2}$ such that $f^{\prime}\left(c_{1}\right)+f^{\prime}\left(c_{2}\right)=2$.
39. Show that for each $a \in(0,1)$ and for each $b \in \mathbb{R}$, the equation $a \sin x+b=x$ has a unique root in \mathbb{R}.
40. Find the number of (distinct) real roots of the following equations.
(a) $3^{x}+4^{x}=5^{x}$
(b) $x^{13}+7 x^{3}-5=0$
41. Show that for each $n \in \mathbb{N}$, the equation $x^{n}+x-1=0$ has a unique root in $[0,1]$. If for each $n \in \mathbb{N}, x_{n}$ denotes this root, then show that the sequence $\left(x_{n}\right)$ converges to 1 .
42. Let $f:(0,1) \rightarrow \mathbb{R}$ be differentiable and let $\left|f^{\prime}(x)\right| \leq 3$ for all $x \in(0,1)$. Show that the sequence $\left(f\left(\frac{1}{n+1}\right)\right)$ converges.
43. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and $\lim _{x \rightarrow \infty} f^{\prime}(x)=1$. Show that f is unbounded.
44. Let $f:[a, b] \rightarrow \mathbb{R}$ be twice differentiable and let $f(a)=f(b)=0$ and $f(c)>0$, where $c \in(a, b)$. Show that there exists $\xi \in(a, b)$ such that $f^{\prime \prime}(\xi)<0$.
45. If $f:[0,4] \rightarrow \mathbb{R}$ is differentiable, then show that there exists $c \in[0,4]$ such that $f^{\prime}(c)=\frac{1}{6}\left(f^{\prime}(1)+2 f^{\prime}(2)+3 f^{\prime}(3)\right)$.
46. Let $f(x)= \begin{cases}x & \text { if } x \in[0,1] \cap \mathbb{Q}, \\ 0 & \text { if } x \in[0,1] \cap(\mathbb{R} \backslash \mathbb{Q}) \text {. }\end{cases}$

Examine whether f is Riemann integrable on $[0,1]$. Also, find $\int_{0}^{1} f$, if it exists (in \mathbb{R}).
47. If $f:[0,1] \rightarrow \mathbb{R}$ is Riemann integrable, then find $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x$.
48. If $f:[0,2 \pi] \rightarrow \mathbb{R}$ is continuous such that $\int_{0}^{\frac{\pi}{2}} f(x) d x=0$, then show that there exists $c \in\left(0, \frac{\pi}{2}\right)$ such that $f(c)=2 \cos 2 c$.
49. Prove that for each $a \geq 0$, there exists a unique $b \geq 0$ such that $a=\int_{0}^{b} \frac{1}{\left(1+x^{3}\right)^{1 / 5}} d x$.
50. Show that there exists a positive real number α such that $\int_{0}^{\pi} x^{\alpha} \sin x d x=3$.
51. Determine all real values of p for which the integral $\int_{0}^{\infty} \frac{e^{-x}-1}{x^{p}} d x$ is convergent.

