Questions:

1. (a) Let $a_{1}=2.5$. For each natural n, define $a_{n+1}=0.9 a_{n}+2022$. Show that the sequence $\left(a_{n}\right)$ converges and find the limit.
Soln.: Method-1

n	a_{n}	
	1	2.5
A few calculations:	2	2024.25
3	3843.825	
4	5481.4425	
5	6955.2982	
6	8281.7683	
7	9475.5914	
8	10550.0322	
9	11517.0289	
10	12387.3260	

makes one suspect that a_{n} is monotonically increasing. A "high-school" rush of taking $\ell=\lim a_{n}$ on $a_{n+1}=0.9 a_{n}+2022$ yields: $\ell=0.9 \ell+2022$, i.e. $\ell=20,220$. This doesn't prove the answer is 20,220 . Do you realize why?
Check $a_{2}=2024.25>2.5=a_{1}$. Assume $a_{k+1}>a_{k}$. Now, $a_{k+2}=0.9 a_{k+1}+2022>$ $0.9 a_{k}+2022=a_{k+1}$. By Principle of Mathematical Induction, $\left(a_{n}\right)$ is a monotonically increasing sequence. Check $a_{1}<2022$. Assume $a_{k}<20,220$. Now, $a_{k+1}=0.9 a_{k}+$ $2022<0.9(20,220)+2022=20,220$. By Induction, $\left(a_{n}\right)$ is bounded above by 20,220 . $\left(a_{n}\right)$ being an increasing and bounded-above sequence converges. High-School Rush: $\lim a_{n+1}=0.9 \lim a_{n}+2022$ implies $\ell=20,220$.
Method-2
By iterating, check and guess that

$$
\begin{aligned}
& a_{1}=2.5, \\
& a_{2}=(0.9)(2.5)+2022, \\
& a_{3}=(0.9)^{2}(2.5)+(1+0.9) 2022, \\
& a_{4}=(0.9)^{3}(2.5)+\left(1+0.9+0.9^{2}\right) 2022, \\
& \ldots=\ldots \\
& a_{n}=(0.9)^{n-1}(2.5)+\left(1+0.9+\cdots+0.9^{n-2}\right) 2022 \text { for } n \geq 3 .
\end{aligned}
$$

Applying induction, the given sequence for all $n \geq 3$ satisfies

$$
\begin{aligned}
a_{n} & =2.5 b_{n}+2022 c_{n} \\
\text { where } b_{n} & =(0.9)^{n-1} \\
\text { and } c_{n} & =1+0.9+\cdots+0.9^{n-2}
\end{aligned}
$$

Both $\lim b_{n} \& \lim c_{n}$ exist and $\lim b_{n}=0$ and $\lim c_{n}=\frac{1}{1-0.9}=10$.
By elementary rules of limits, $\lim a_{n}=2.5(0)+2022(10)=20,220$.
(b) Using axioms for \mathbb{R}, prove that the function $\lambda: \mathbb{R} \rightarrow \mathbb{R}$ given by $\lambda(x)=x^{3}$ is injective.[3]

Soln.: Suppose λ is NOT injective, i.e., there exist $x, y \in \mathbb{R}, x \neq y$ with $\lambda(x)=\lambda(y)$, i.e.,

$$
x^{3}=y^{3} .
$$

$$
\begin{array}{lcl}
& x^{3}=y^{3} & \\
\Rightarrow & x^{3}-y^{3}=0 & \text { Add }\left(-y^{3}\right) \text { to both sides } \\
\Rightarrow & (x-y)\left(x^{2}+x y+y^{2}\right)=0 & \text { Use distrib. of multip. over add.) } \\
\Rightarrow & x-y=0-\mathrm{OR}-\left(x^{2}+x y+y^{2}\right)=0 & \text { Recall: } a b=0 \Rightarrow a=0 \text { OR } b=0
\end{array}
$$

Case (I) $x-y=0$. Add y to both sides and using associativity and the fact that $-y$ is the additive inverse of y, we get $(x-y)+y=0+y \Rightarrow(x+(-y))+y=y \Rightarrow x+((-y)+y)=$ $y \Rightarrow x+0=y \Rightarrow x=y$, a contradiction to our assumption that $x \neq y$. Case (II) $x^{2}+x y+y^{2}=0$ Method-1:
Next, recall that we have proved in class/tutorial that for a real number $a \neq 0, a^{2}>0$, and also, $a^{2}=0 \Leftrightarrow a=0$. Using the latter, we have that for two real numbers a, b, $a^{2}+b^{2} \geq 0$ and $a^{2}+b^{2}=0$ implies $a=b=0$.
Completing the square in $x^{2}+x y+y^{2}=\left(x+\frac{1}{2} y\right)^{2}+\frac{3}{4} y^{2}$. Take $a=\left(x+\frac{1}{2} y\right)$ and $b=\sqrt{\frac{3}{4}} y$ and from the above work, we have $a^{2}+b^{2}=x^{2}+x y+y^{2}=0$. So we get $a=b=0$, i.e. $x+\frac{1}{2} y=\sqrt{\frac{3}{4}} y=0$. From this conclude $y=0$ and then $x=0$.
Method-2:
Case (i) $0 \leq x<y$: Then $0 \leq x^{2}+x y$ and $0<y$ implies $0<y^{2}$. So that $0<x^{2}+x y+y^{2}$, i.e., a contradiction to first-step.

Case (ii) $x<0 \leq y$:
Case(.) $y+x>0: x^{2}+x y+y^{2}=x^{2}+(x+y) y>0$, a contradiction to first-step,
Case (..) $y+x=0: x^{2}+x y+y^{2}=x^{2}+(x+y) y>0$, a contradiction to first-step.
Case $(\ldots) y+x<0:: x^{2}+x y+y^{2}=(x+y) x+y^{2}>0$, a contradiction to first-step.
Case (iii) $x<y \leq 0$: Similar to Case (i).
Method-3:
Case (i) $y=0$: Then $x^{2}=0$ implies $x=0$. A contradiction to $x \neq y$.
Case (ii) $y \neq 0$: Then by dividing $x^{2}+x y+y^{2}=0$ by $y^{2} \neq 0$, get $\lambda^{2}+\lambda+1=0$ where $\lambda=\frac{x}{y}$.
If you follow completing the square, as in Method-1 and prove that there are no solutions $x^{2}+x y+y^{2}=0$, then you get full marks, i.e. Note: If you use discriminant of a quadratic (you are not using axioms and immediately derived properties), you lose $1 / 2$ mark, i.e. you get only 0.5 marks, instead of 1 .
2. (a) Show that the series $\sum \frac{(n!)^{2}}{(2 n+2)!}$ converges.

Soln.: Write $a_{n}=\frac{(n!)^{2}}{(2 n+2)!}$. Then

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{\frac{((n+1)!)^{2}}{(2(n+1)+2)!}}{\frac{(n!)^{2}}{(2 n+2)!}} \\
& =\frac{(n+1)^{2}}{(2 n+3)(2 n+4)}
\end{aligned}
$$

Now taking limit as $n \rightarrow \infty$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty}\left(\frac{n^{2}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)}{n\left(2+\frac{3}{n}\right) n\left(2+\frac{4}{n}\right)}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1+\frac{2}{n}+\frac{1}{n^{2}}}{\left(\frac{3}{n}+2\right)\left(\frac{4}{n}+2\right)}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1+\frac{2}{n}+\frac{1}{n^{2}}}{\left(\frac{3}{n}+2\right)\left(\frac{4}{n}+2\right)}\right) \\
& =\frac{\lim _{n \rightarrow \infty} 1+\frac{2}{n}+\frac{1}{n^{2}}}{\lim _{n \rightarrow \infty}\left(\frac{3}{n}+2\right)\left(\frac{4}{n}+2\right)} \\
& =\frac{1}{4}<1 .
\end{aligned}
$$

Therefore, by Ratio Test, the series converges absolutely. As $a_{n}>0$ for all n, the series converges.

Soln.: Using Comparison test:

Note that for each $n \in \mathbb{N}$,

$$
0<\frac{(n!)^{2}}{(2 n+2)!}=\frac{(n!)^{2}}{(2 n+2)(2 n+1)(2 n)!}<\frac{(n!)^{2}}{(2 n)!}
$$

Consider $b_{n}=\frac{(n!)^{2}}{(2 n)!}$.
Then

$$
\begin{aligned}
\frac{b_{n+1}}{b_{n}} & =\frac{\frac{((n+1)!)^{2}}{(2(n+1)!}}{\frac{(n!)^{2}}{(2 n)!}} \\
& =\frac{\frac{(n+1)^{2}(n!)^{2}}{(2 n+2)(2 n+1)(2 n)!}}{\frac{(n!)^{2}}{(2 n)!}} \\
& =\frac{(n+1)^{2}(n!)^{2}}{(2 n+2)(2 n+1)(2 n)!} \cdot \frac{(2 n)!}{(n!)^{2}} \\
& =\frac{(n+1)^{2}}{2(n+1)(2 n+1)}
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{2(n+1)(2 n+1)}=\frac{1}{4}<1 .
$$

Therefore, by Ratio Test, the series $\sum b_{n}$ converges, and hence by Comparison test, the series $\sum a_{n}$ converges.
(b) Two sequences of real numbers $\left(a_{n}\right)$ and $\left(b_{n}\right)$ satisfy $a_{n}=b_{n}$ for all $n \geq k$, for some natural number k. Show that $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.
Soln.: Let s_{n} denote the sequence of partial sums of the series $\sum a_{n}$ and let t_{n} denote the sequence of partial sums of the series $\sum b_{n}$. Further let $s_{k-1}=\alpha$ and $t_{k-1}=\beta$. Observe that for all $n \geq k, s_{n}-\alpha=t_{n}-\beta$. (Since $a_{n}=b_{n}$, for all $n \geq k$.)
Assume $\sum b_{n}$ converges. By definition, $\lim t_{n}$ exists. Using this above, $\lim s_{n}=\alpha-\beta+$ $\lim t_{n}$ also exists. Hence $\sum a_{n}$ converges. Similarly, we can say that $\sum b_{n}$ converges if $\sum a_{n}$ converges.

Soln.:

We have $a_{n}=b_{n}$ for all $n \geq k$, for some natural number k. Let $S_{n}=\sum_{m=1}^{n} a_{m}$ and $T_{n}=\sum_{m=1}^{n} b_{m}$. Then, for $n>m \geq k$, we have

$$
\begin{aligned}
\left|S_{n}-S_{m}\right| & =\left|a_{m+1}+a_{m+2}+\ldots+a_{n}\right| \\
& =\left|b_{m+1}+b_{m+2}+\ldots+b_{n}\right| \\
& =\left|T_{n}-T_{m}\right|
\end{aligned}
$$

Now, suppose $\sum a_{n}$ converges. Then by the Cauchy Criterion, for $\epsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left|S_{n}-S_{m}\right|<\epsilon \quad \text { for all } \quad n>m \geq N .
$$

Consider $M=\max (N, k)$. Then for every $\epsilon>0$, we have

$$
\left|T_{n}-T_{m}\right|=\left|S_{n}-S_{m}\right|<\epsilon \quad \text { for all } \quad n>m \geq M
$$

Therefore, by Cauchy criterion, the sequence of partial sums $\sum b_{n}$ is convergent.
Similarly, we can say that $\sum a_{n}$ converges if $\sum b_{n}$ converges.
3. (a) Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a function. For each of the statements given below, prove it if it is true. If the statement is false, give a counter-example.
i. If h is continuous, for every unbounded sequence of real numbers $\left(x_{n}\right)$ the sequence $\left(h\left(x_{n}\right)\right)$ is unbounded.
Soln.: Counter Example-1: The constant function $h(x) \equiv 2.5$ is continuous, the sequence $x_{n}=n$ is unbounded but the sequence $h\left(x_{n}\right)=2.5$ is bounded.
Counter Example-2: The sine function $h(x)=\sin (x)$ is continuous, the sequence $x_{n}=2 n \cdot \pi$ is unbounded, but the sequence $h\left(x_{n}\right)=0$ is bounded.
Any valid counter example where h is 'known' to be continuous from class, where unboundedness of x_{n} is known from class and boundedness of $h\left(x_{n}\right)$ is evident will get a mark.
ii. If h is continuous, for every bounded sequence of real numbers $\left(y_{n}\right)$ the sequence $\left(h\left(y_{n}\right)\right)$ is bounded.
Soln.: The statement is true. If $\left(y_{n}\right)$ is a bounded sequence, there exists a real number $B>0$ such that $\left|y_{n}\right| \leq B$. Consider the restriction of h to the interval $[-B, B]$, $h_{B}:[-B, B] \rightarrow \mathbb{R}$ (defined via the usual $h_{B}(x)=h(x)$). h_{B} is continuous as it is the restriction of a continuous function. Range $\left(h_{B}\right)$ is bounded as h_{B} is continuous and its domain of definition is a compact interval. Therefore, $\left(h\left(y_{n}\right)\right) \subset$ Range $\left(h_{B}\right)$ is bounded.
(b) Let $h:[0,1] \rightarrow \mathbb{R}$ be a continuous function. If $\left(z_{n}\right)$ is a cauchy sequence in $[0,1]$, show that the sequence ($h\left(z_{n}\right)$) converges.
Soln.: The statement is true. From the proposition that every cauchy sequence converges, the given sequence z_{n} being cauchy converges to a real number z, say. From the inequalities $0 \leq z_{n} \leq 1$, and $z_{n} \rightarrow z$, we get $0 \leq z \leq 1$. Conclude that $z \in[0,1]$. By sequential criterion for continuity $h\left(z_{n}\right) \rightarrow h(z)$.
4. (a) Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be the polynomial function $p(x)=\frac{1}{2} x^{5}-400 x^{4}+30 x^{3}-2000 x^{2}+x-100$. Show that there exists a $c \in \mathbb{R}$ such that $p(c)=0$.

Soln.: Note the following inequalities:

$$
\begin{aligned}
\frac{1}{5} \cdot \frac{1}{2} x^{5} & \\
& =\frac{x}{10} x^{4}>400 x^{4} \text { for every } x>4,000 \\
& =\frac{x^{2}}{10} x^{3}>-30 x^{3} \text { for every } x>0 \\
& =\frac{x^{3}}{10} x^{2}>2000 x^{2} \text { for every } x>\sqrt[3]{20,000} \\
& =\frac{x^{4}}{10} x^{1}>-x \text { for every } x>0 \\
& =\frac{x^{5}}{10}>100 \text { for every } x>\sqrt[5]{1,000}
\end{aligned}
$$

Adding these 5 inequalities, $5 \cdot \frac{1}{5} \cdot \frac{1}{2} x^{5}=\frac{1}{2} x^{5}>400 x^{4}-30 x^{3}+2000 x^{2}-x+100$ for every $x>\max (4000,0, \sqrt[3]{20,000}, 0, \sqrt[5]{1,000})=4000$. Thus we have proved, for instance, that $p(4001)>0$. Or using any method, find a real number β and verify by calculation that $p(\beta)>0$.

By substitution $-100=p(0)<0$ or any other valid α such that $p(\alpha)<0$. Mention p is continuous and apply Intermediate value theorem to get $p(c)=0$ for some $c \in(0,4001)$, in our calculation or $c \in(\alpha, \beta)$, assuming your $\alpha<\beta$.

Some calculations for your reference are listed below. These are not expected on your test booklet. But they are given to give an idea of where p is positive and where it is negative. This table is also useful for graders as a quick reference to check some of the calculations of the students.

x	$\mathrm{p}(\mathrm{x})$
-10000	-54000030200000010100.0
-2000	-22400248000002100.0
-1000	-900032000001100.0
-500	-40629250000600.0
-100	-45050000200.0
-50	-2665000150.0
-10	-4280110.0
-1	-2531.5
0	-100.0
0.5	-620.73438
1	-2468.5
10	-4120090.0
20	-62960080.0
50	-3499000050.0
100	-47983999990000.0
200	-2024369999800.0
300	-9371749999600.0
500	-11995689999400.0
700	-254790015.60049
799.93	-946729.14402
799.93124	1100406.92678
799.93125	1792422937.23531
799.94	14080000700.0
800	100028000000900.0
1000	9600232000001900.0
2000	410139771097971531.5

Method-2 Every odd degree polynomial, whose co-efficients are real numbers, has a real root. This was proved as a tutorial problem. Hence p has a real root.
(b) Let $q(x)=\sqrt{2022}+(4 x-1)(3 x-1)(2 x-1)\left(x^{2}-1\right)(x+2)(x+3)(x+4)$. Show that there exist at least 7 real numbers α_{i} such that $q^{\prime}\left(\alpha_{i}\right)=0$ for $i \in\{1,2, \ldots, 7\}$.
Soln.: Method-1:
Define $\left\{c_{i}\right\}_{1}^{8}$ as follows:

$$
c_{1}=-4<c_{2}=-3<c_{3}=-2<c_{4}=-1<c_{5}=\frac{1}{4}<c_{6}=\frac{1}{3}<c_{7}=\frac{1}{2}<c_{8}=1 .
$$

Note that $q\left(c_{i}\right)=\sqrt{2022}$ for every $1 \leq i \leq 8$. If the student finds only a couple, or three or four etc. of c_{i}, then stepmarks may be given proportionately.
We can apply Rolle's Theorem as q is continuous and differentiable. In particular, applying Rolle's Theorem to the 7 intervals $\left[c_{i}, c_{i+1}\right]$ for $i \in\{1,2, \ldots, 7\}$, we get the required 7 real numbers α_{i} such that $q^{\prime}\left(\alpha_{i}\right)=0$. Note that while applying Rolle's Theorem, we have used the observation that restrictions of a continuous and differentiable function are continuous and differentiable. Method-2:
Define $\left\{c_{i}\right\}_{1}^{8}$ as follows:

$$
c_{1}=-4<c_{2}=-3<c_{3}=-2<c_{4}=-1<c_{5}=\frac{1}{4}<c_{6}=\frac{1}{3}<c_{7}=\frac{1}{2}<c_{8}=1 .
$$

Need to show, by calculations that $q^{\prime}\left(c_{1}\right), q^{\prime}\left(c_{2}\right), q^{\prime}\left(c_{3}\right), q^{\prime}\left(c_{4}\right), \ldots q^{\prime}\left(c_{8}\right)$ are alternately negative, positive, negative, positive, If the student finds only a couple, or three or four etc. of c_{i}, then stepmarks may be given proportionately.

We can apply Intermediate Value Theorem to q^{\prime} as q^{\prime} is continuous. Now, applying Intermediate Value Theorem to the 7 intervals $\left[c_{i}, c_{i+1}\right]$ for $i \in\{1,2, \ldots, 7\}$, we get the required 7 real numbers α_{i} such that $q^{\prime}\left(\alpha_{i}\right)=0$. Note that while applying Intermediate Value Theorem, we have used the observation that restrictions of a continuous function are continuous.
5. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ as:

$$
g(x)= \begin{cases}-x, & \text { if } x<0 \tag{3}\\ \sqrt{x}, & \text { if } x \geq 0\end{cases}
$$

(a) Using Weierstrass' Criterion, show that g is continuous at $x=0$.

Soln.:
Graph of g :

Preliminary Observations: Note that $g(0)=0$. We give examples of different values of ϵ and explore to propose suitable values of δ such that if $|x-0|<\delta$, then $|g(x)-g(0)|=$ $|g(x)|<\epsilon$.
i. Suppose $\epsilon=4$ is given. To make $|g(x)|<4$, guess from the graph the two trivia: If x is negative, then $x>-4$ ensures $g(x)=-x<4$. If x is positive, then $x<16$ ensures $g(x)=\sqrt{x}<4$. Thus $\delta=4=\min (|-4|, 16)$ would "work" for $\epsilon=4$. Of course, any number smaller than 4 would "work" as delta.
ii. Suppose $\epsilon=2$ is given. To make $|g(x)|<2$, guess from the graph the two trivia: If x is negative, then $x>-2$ ensures $g(x)=-x<2$. If x is positive, then $x<4$ ensures $g(x)=\sqrt{x}<2$. Thus $\delta=2=\min (|-2|, 4)$ would "work" for $\epsilon=2$. Of course, any number smaller than 2 would "work" as delta.
iii. Suppose $\epsilon=0.5$ is given. To make $|g(x)|<0.5$, guess from the graph the two trivia: If x is negative, then $x>-0.5$ ensures $g(x)=-x<0.5$. If x is positive, then $x<0.25=0.5^{2}$ ensures $g(x)=\sqrt{x}<0.5$. Thus $\delta=.25=\min (|-0.5|, 0.25)$ would "work" for $\epsilon=2$. Of course, any number smaller than .25 would "work" as delta.
iv. Suppose $\epsilon=0.25$ is given. To make $|g(x)|<0.25$, guess from the graph the two trivia: If x is negative, then $x>-0.25$ ensures $g(x)=-x<0.25$. If x is positive, then $x<0.0625=0.25^{2}$ ensures $g(x)=\sqrt{x}<0.25$. Thus $\delta=.0625=\min (|-0.25|, 0.0625)$ would "work" for $\epsilon=.25$. Of course, any number smaller than .0625 would "work" as delta.
What did you learn from the above observations? From the list of observations above, one can guess that $\delta_{1}=\epsilon$ "works" for negative values of x and $\delta_{2}=\epsilon^{2}$ "works" for nonnegative values of x. Therefore take $\delta=\min \left(\delta_{1}, \delta_{2}\right)>0$. Next assume x is any real
number satisfying $|x|<\delta$. Then: $|x|<\delta_{1}$ and $|x|<\delta_{2}$. The following two conclusions are true:
If x is negative, $|g(x)|=|-x|<\delta \leq \delta_{1}=\epsilon$. If x is non-negative, $|g(x)|=\sqrt{x}<\epsilon$. Note that in writing $\sqrt{x}<\epsilon$ from $|x|<\delta \leq \delta_{2}=\epsilon^{2}$ we are using that the square-root function is monotonically increasing on non-negative real numbers.
Thus we have proved continuity, using Weiserstrass criterion.

Method-2

Given a real $\epsilon>0$, define $\epsilon_{0}=\min (\epsilon, 1)$. Take $\delta=\epsilon_{0}^{2}$. Next assume x is any real number satisfying $|x|<\delta$. Then: $|x|<\epsilon_{0}^{2}$. The following two conclusions are true:
If x is negative, $|g(x)|=|-x|<\epsilon_{0}^{2} \leq \epsilon_{0} \leq \epsilon$. Note that in writing $\epsilon_{0}^{2} \leq \epsilon_{0}$, we have used $\epsilon_{0} \leq 1$ If x is non-negative, $|g(x)|=\sqrt{x}<\epsilon_{0}<\epsilon$. Note that in writing $\sqrt{x}<\epsilon_{0}$ from $x^{2}<\epsilon_{0}^{2}$ we are using that the square-root function is monotonically increasing on non-negative real numbers.
(b) Using the definition, show that g is not differentiable at 0 .
\{Warning: Do NOT use left/right-hand limits.\}
Soln.:
Let A be a domain in \mathbb{R} and $c \in A$. Consider a function $f: \rightarrow \mathbb{R}$.
WC-lim: We say Weierstrass Criterion holds for a real number L if:
For every real $\epsilon>0$, there exists a real $\delta>0$ such that for all $0<|x-c|<\delta$ it should be true that $|f(x)-f(c)|<\epsilon$.
SC-lim: We say Sequential Criterion holds for a real number L if:
For every sequence of real numbers $x_{n} \rightarrow c\left(\right.$ with $x_{n} \neq c$, for every $\left.n\right)$ we have $\lim f\left(x_{n}\right) \rightarrow L$.
Recall that we say $\lim _{x \rightarrow c} f(x)=L$ for a real number L if WC-lim holds. You could try to prove that WC-lim and SC-lim are equivalent. Here, for the purposes of this question, can you prove: WC-lim implies SC-lim?
\{Hint: Recall the proof of Weierstrass' Criterion implies Sequential Criterion (for continuity at a point) discussed in detail in class and available on Lecture Notes. A verbatim copy of that proof proves the required proposition.\}
Assume g is differentiable at 0 . Then $\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}=L$, exists for some real L. We apply SC-lim: Take the sequence $h_{n}=\frac{1}{n^{2}}$, note that $h_{n} \rightarrow 0$, that none of the $h_{n}=0$. However, $\lim \frac{g\left(h_{n}\right)-g(0)}{h_{n}}=\frac{\sqrt{1 / n^{2}}}{1 / n^{2}}=\lim n$ does not exist as the sequence is unbounded. Method-2
Assume g is differentiable at 0 . Then $\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}=L$, exists for some real L.
Case (i) $L=-1$. Take $\epsilon=1$. Then by our assumption of differentiability, there exists a real $\delta>0$ such that for all $0<|h|<\delta$, we are assured of having $\left|\frac{g(0+h)-g(0)}{h}-(-1)\right|<\epsilon=1$. Take any $h \in(0, \delta)$ and the term $\left|\frac{g(0+h)-g(0)}{h}-(-1)\right|=\frac{1}{\sqrt{h}}+1>1$, a contradiction to the assurance. Case (ii) $L \neq-1$. Take $\epsilon=\frac{|L+1|}{2}>0$. Then by our assumption of differentiability, there exists a real $\delta>0$ such that for all $0<|h|<\delta$, we are assured of having $\left|\frac{g(0+h)-g(0)}{h}-L\right|<\epsilon=\frac{|L+1|}{2}$. Take any $h \in(-\delta, 0)$ and the term $\left|\frac{g(0+h)-g(0)}{h}-L\right|=$ $\left|\frac{-h}{h}-L\right|=|L+1|>\epsilon=\frac{|L+1|}{2}$, a contradiction to the assurance.
6. Let $f:[0,2] \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{aligned}
-1, & \text { if } 0 \leq x \leq 1 \\
1, & \text { if } 1<x \leq 2
\end{aligned}\right.
$$

(a) Use the definition of Riemann integrability to show that f is integrable on $[0,2]$.

Soln.: Consider a partition \mathcal{P} of $[0,2]$

$$
0=x_{0}<x_{1}<x_{2}<\cdots<x_{i}<x_{i+1}<\cdots<x_{n}=2
$$

Define I to be the unique index in the range $\{0,1,2, \ldots, n-1\}$ such that $x_{I} \leq 1<x_{I+1}$.
Note that such I is well-defined and unique.
Let $\left\{\xi_{i}\right\}_{i=1}^{n}$ be any collection of tags for \mathcal{P}. Note that $f\left(\xi_{i}\right)=-1$ for all $1 \leq i \leq I$, that $f\left(\xi_{i}\right)=1$ for $I+2 \leq i \leq n$.
Therefore, the Riemann sum

$$
\begin{aligned}
S(f, \mathcal{P}) & =\sum_{i=1}^{n} f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{I} f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)+f\left(\xi_{I+1}\right)\left(x_{I+1}-x_{I}\right)+\sum_{i=I+2}^{n} f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =(-1)\left(x_{I}-x_{0}\right)+f\left(\xi_{I+1}\right)\left(x_{I+1}-x_{I}\right)+(1)\left(x_{n}-x_{I+1}\right) \\
& =(-1)\left(x_{I}-0\right)+f\left(\xi_{I+1}\right)\left(x_{I+1}-x_{I}\right)+(1)\left(2-x_{I+1}\right)
\end{aligned}
$$

Rewriting $(-1) x_{I}$ as $(-1)+\left(1-x_{I}\right)$ and $2-x_{I+1}$ as $1-\left(x_{I+1}-1\right)$.

$$
\begin{aligned}
|S(f, \mathcal{P})-0| & =\left|(-1) \cdot x_{I}+f\left(\xi_{I+1}\right)\left(x_{I+1}-x_{I}\right)+(1) \cdot\left(2-x_{I+1}\right)\right| \\
& =\left|(-1)+\left(1-x_{I}\right)+f\left(\xi_{I+1}\right)\left(x_{I+1}-x_{I}\right)+(1) \cdot\left(1-\left(x_{I+1}-1\right)\right)\right| \\
& =\left|\left(1-x_{I}\right)+f\left(\xi_{I+1}\right)\left(x_{I+1}-x_{I}\right)+\left(1-x_{I+1}\right)\right| \\
& \leq\left|\left(1-x_{I}\right)\right|+\left|f\left(\xi_{I+1}\right)\left(x_{I+1}-x_{I}\right)\right|+\left|\left(1-x_{I+1}\right)\right| \\
& \leq\left|\left(x_{I+1}-x_{I}\right)\right|+\left|f\left(\xi_{I+1}\right)\left(x_{I+1}-x_{I}\right)\right|+\left|\left(x_{I+1}-x_{I}\right)\right|
\end{aligned}
$$

Since $1<\xi_{I+1}$, we have $f\left(\xi_{I+1}\right)=1$. Therefore,

$$
|S(f, \mathcal{P})|=\left|\left(x_{I+1}-x_{I}\right)\right|+\left|\left(x_{I+1}-x_{I}\right)\right|+\left|\left(x_{I+1}-x_{I}\right)\right| .
$$

Now, given any real $\epsilon>0$, choose $\delta=\frac{\epsilon}{3}$. Let $\mathcal{P}=\left\{\left[x_{i-1}, x_{i}\right] \mid 0 \leq i \leq n\right\}$ be a partition of $[0,2]$ such that $\|\mathcal{P}\|<\delta$. Therefore $\left|x_{i}-x_{i-1}\right|<\delta$, for all i.
Thus,

$$
|S(f, \mathcal{P})-0|=|S(f, \mathcal{P})| \leq \delta+\delta+\delta<3 \delta=\epsilon
$$

Hence, f is Riemann integrable on $[0,2]$.
(b) Explain why f is Riemann integrable on $[0, x]$, for every $x \in[0,2]$.

Soln.: Recall: If f is integrable on an interval S, then it is integrable on every subinterval $I \subset S$.
(c) Define $F:[0,2] \rightarrow \mathbb{R}$ via $F(x)=\int_{0}^{x} f$. Show that F is continuous on $[0,2]$.

Soln.: Let $y, z \in[0,2]$ with $y<z$. Then,

$$
F(z)=\int_{0}^{z} f=\int_{0}^{y} f+\int_{y}^{z} f=F(y)+\int_{y}^{z} f .
$$

Therefore, $F(z)-F(y)=\int_{y}^{z} f$. We know that $-1 \leq f(x) \leq 1$ for all $x \in[0,2]$. Therefore,

$$
(-1)(z-y) \leq \int_{y}^{z} f \leq(1)(z-y)
$$

and hence $|F(z)-F(y)|=\left|\int_{y}^{z} f\right| \leq|z-y|$.
To check continuity of F at $x=a \in[0,2]$: Let $\epsilon>0$. Choose $\delta=\epsilon$. Then for $x \in(a-\delta, a+\delta) \cap[0,2]$,

$$
|F(x)-F(a)| \leq|x-a|<\delta=\epsilon
$$

Therefore, F is continuous at a.
For better understanding of F, show that $F(x)=-x$ for $x \in[0,1]$ and $F(x)=x-2$ for $x \in[1,2]$.
7. (a) Write down the radii of convergence of each of the power series given below. You do not have to justify your answer for this part.
i. $\sum_{1}^{\infty}\left(9 n^{2}\right)^{n} x^{n}$
iii. $\sum_{1}^{\infty} 7^{n} x^{n}$
ii. $\sum_{1}^{\infty}(8 n)^{n} x^{n}$
iv. $\sum_{1}^{\infty} \frac{x^{n}}{(6 n)!}$

Soln.:

i. $\sum_{1}^{\infty}\left(9 n^{2}\right)^{n} x^{n}, \quad r=0$
iii. $\sum_{1}^{\infty} 7^{n} x^{n}, \quad r=\frac{1}{7}$
ii. $\sum_{1}^{\infty}(8 n)^{n} x^{n}, \quad r=0$
iv. $\sum_{1}^{\infty} \frac{x^{n}}{(6 n)!}, \quad r=\infty$.
(b) Consider $\theta:(0, \infty) \rightarrow(0, \infty)$ given by $\theta(x)=\frac{1}{x^{2}}+\frac{1}{x}$. Show that θ is bijective and that θ^{-1} is continuous.
Soln.: To show that θ is one-to-one, suppose that $\theta\left(x_{1}\right)=\theta\left(x_{2}\right)$ for some $x_{1}, x_{2} \in(0, \infty)$. Then

$$
\begin{aligned}
\frac{1}{x_{1}^{2}}+\frac{1}{x_{1}} & =\frac{1}{x_{2}^{2}}+\frac{1}{x_{2}} \\
\Longrightarrow\left(\frac{1}{x_{1}}+\frac{1}{2}\right)^{2}-\frac{1}{4} & =\left(\frac{1}{x_{2}}+\frac{1}{2}\right)^{2}-\frac{1}{4} \\
\Longrightarrow \quad\left(\frac{1}{x_{1}}+\frac{1}{2}\right) & =\left\{\begin{array}{l}
\left(\frac{1}{x_{2}}+\frac{1}{2}\right) \\
-\left(\frac{1}{x_{2}}+\frac{1}{2}\right)
\end{array}\right. \text { OR }
\end{aligned}
$$

As $x_{2}>0,-\left(\frac{1}{x_{2}}+\frac{1}{2}\right)<0$. Therefore,

$$
\left(\frac{1}{x_{1}}+\frac{1}{2}\right)=\left(\frac{1}{x_{2}}+\frac{1}{2}\right) \Longrightarrow x_{1}=x_{2}
$$

Therefore θ is injective.
To show that θ is surjective, we need to show that for any $y \in(0, \infty)$, there exists an $x \in(0, \infty)$ such that $\theta(x)=y$. Let $y \in(0, \infty)$. Then we can solve the equation $\theta(x)=y$ for x to get

$$
x=\frac{1 \pm \sqrt{1+4 y}}{2 y}
$$

Since $y>0, \frac{1+\sqrt{1+4 y}}{2 y}>0$, so θ is surjective.
Therefore, θ is bijective. And the inverse function is given by

$$
\theta^{-1}(y)=\frac{1+\sqrt{1+4 y}}{2 y}
$$

We will show that θ^{-1} is continuous using Sequential Criterion:
Let $\left(y_{n}\right)$ be a convergent sequence in $(0, \infty)$, such that $y_{n} \rightarrow y$ and $y \in(0, \infty)$. Consider the sequence $x_{n}=\frac{1+\sqrt{1+4 y_{n}}}{2 y_{n}}$. Since $y_{n} \neq 0$ and $y \neq 0$, by applying ratio of limits, we get

$$
\begin{aligned}
\lim x_{n} & =\lim \frac{1+\sqrt{1+4 y_{n}}}{2 y_{n}} \\
& =\frac{\lim \left(1+\sqrt{1+4 y_{n}}\right)}{\lim \left(2 y_{n}\right)} \\
& =\frac{1+\sqrt{1+4 y}}{2 y}
\end{aligned}
$$

which lies in $(0, \infty)$. Hence the sequence $\left(x_{n}\right)=\left(\theta^{-1}\left(y_{n}\right)\right)$ is convergent. As $\left(y_{n}\right)$ is arbritrary, by sequential criterion, θ^{-1} is continuous.

Soln.: (Alternate-1: Continuity Using Inverse function theorem):

Let $0<x<y$ be real numbers. Then

$$
\begin{aligned}
& x<y \Longrightarrow \quad \frac{1}{y}<\frac{1}{x} \\
& \Longrightarrow \quad \frac{1}{y^{2}}+\frac{1}{y}<\frac{1}{x^{2}}+\frac{1}{x} \\
& \Longrightarrow \quad \theta(y)<\theta(x) \text {. }
\end{aligned}
$$

Thus, θ is a strictly decreasing function. Clearly, θ is continuous. Therefore, by Continuous Inverse Function Theorem, θ^{-1} is monotonic and continuous.
Note: You still need to prove bijectivity, as shown earlier.
Soln.: (Injectivity using derivatives):
It is enough to show that θ is strictly monotonic. To show this, consider $\theta^{\prime}(x)=-\frac{2}{x^{3}}-\frac{1}{x^{2}}$. Note that $\theta^{\prime}(x)<0$, for all $x \in(0, \infty)$. This proves θ is injective.
Note: You still need to prove surjectivity, continuity etc.

