MA-101 Mid-Semester Solutions Version: Dec 23" 9PM

QUESTIONS:

1. (a) Let a; = 2.5. For each natural n, define a,; = 0.9a, + 2022. Show that the sequence
(ay) converges and find the limit. 2]

Soln.: Method-1

n an,
1 2.5
2 2024.25
3 3843.825
4 5481.4425
5

6

7

8

6955.2982
8281.7683
9475.5914
10550.0322

9 11517.0289
10 12387.3260

makes one suspect that a,, is monotonically increasing. A “high-school” rush of taking
¢ =lima, on a,y1 = 0.9a, + 2022 yields: ¢ = 0.9¢ + 2022, i.e. £ = 20,220. This doesn’t
prove the answer is 20,220. Do you realize why?

A few calculations:

Check ay = 2024.25 > 2.5 = a;. Assume a1 > ap. Now, agio = 0.9a,.1 + 2022 >
0.9a; + 2022 = ayy1. By Principle of Mathematical Induction, (a,) is a monotonically
increasing sequence.  Check a; < 2022. Assume a; < 20,220. Now, ary; = 0.9a; +
2022 < 0.9(20,220) + 2022 = 20,220. By Induction, (a,) is bounded above by 20,220.
(a,) being an increasing and bounded-above sequence converges.  High-School Rush:
lima,,; = 0.9lim a,, + 2022 implies ¢ = 20, 220.

Method-2

By iterating, check and guess that

a; = 2.5,

az = (0.9)(2.5) + 2022,

az = (0.9)%(2.5) + (1 + 0.9)2022,

as = (0.9)*(2.5) + (1 + 0.9 + 0.9%)2022,

an = (0.9)"71(2.5) + (1 +0.9 + --- +0.9"2)2022 for n > 3.

Applying induction, the given sequence for all n > 3 satisfies

a, = 2.5b, + 2022¢,
where b, = (0.9)"!
and ¢, =1+09+---+0.9"2

Both lim b, & lim ¢, exist and lim b, = 0 and lim ¢, = =5 = 10.

By elementary rules of limits, lim a,, = 2.5(0) + 2022(10) = 20, 220.

3

(b) Using axioms for R, prove that the function A : R — R given by A(z) = z* is injective.[3]

Soln.: Suppose A is NOT injective, i.e., there exist z,y € R, x # y with A(x) = A(y), i.e.,
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3 =5
23 = o
= 23—y =0 Add (—»*) to both sides
= (z—y)(@*+ay+y*) =0 Use distrib. of multip. over add.)
= r2—y=00R(2>+zy+y?)=0 Recal: ab=0=a=00Rb=0
Case (I) z—y = 0. Add y to both sides and using associativity and the fact that —y is the
additive inverse of y, we get (z —y)+y=04+y = (z+(—y))+ty=y=>2+((—y)+y) =
y = x+0 =y = z =y, a contradiction to our assumption that z # y. Case (II)
2?4+ 2y + y? = 0 Method-1:
Next, recall that we have proved in class/tutorial that for a real number a # 0, a? > 0,
and also, a> = 0 & a = 0. Using the latter, we have that for two real numbers a, b,
a?+b* > 0 and a? + b? = 0 implies a = b = 0.
Completing the square in 22 +xy +y? = (v + %y)Q + %yQ. Take a = (z + %y) and b = \/gy
and from the above work, we have a®> +b*> = 22 + 2y +y?> = 0. Sowe get a = b = 0, i.c.
x + %y = \/gy = (. From this conclude y = 0 and then z = 0.
Method-2:
Case (i) 0 < x < y: Then 0 < 22 +xy and 0 < y implies 0 < y2. So that 0 < 22 + xy + v,
i.e., a contradiction to first-step.
Case (ii) z <0 < y:
Case(.) y+x > 0: 22 + 2y +y? = 2° + (x + y)y > 0, a contradiction to first-step,
Case(..) y+z=0: 22 +xy +y*> = 2>+ (x + y)y > 0, a contradiction to first-step.
Case(...) y+x < 0: : 22+ 2y +9y*> = (r+y)r+y* > 0, a contradiction to first-step.
Case (iii) z < y < 0: Similar to Case (i).
Method-3:
Case (i) y = 0: Then 22 = 0 implies z = 0. A contradiction to x # .
Case (ii) y # 0: Then by dividing 2 + zy + y*> = 0 by y? # 0, get A> + A+ 1 = 0 where
A=73
If you follow completing the square, as in Method-1 and prove that there are no solutions
22+ 2y +1y* = 0, then you get full marks, i.e. Note: If you use discriminant of a quadratic
(you are not using axioms and immediately derived properties), you lose 1/2 mark, i.e.
you get only 0.5 marks, instead of 1.
2. (a) Show that the series 3 - on +2 ey CONVerges. 2]
. : _(nh)?
Soln.: Write a,, = Ty Then
((n+1)))?
Ant+1  (2(n+1)+2)!
a - (n!)2
n (2n+2)!
B (n+1)2
 (2n+3)(2n+4)
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Now taking limit as n — oo,

Cana n? (1+2+ %)

lim = lim N

nooo a4 o \n (24 2)n (24 5)
i (LR
T\ () (1Y)
i (LR
A CER IR

lim, oo 14 2 + 25

im0 12) (1 2)

1
=—-<1.
4
Therefore, by Ratio Test, the series converges absolutely. As a,, > 0 for all n, the series
converges.
Soln.: Using Comparison test:

Note that for each n € N,

(n})?

2 <
(2n 4+ 2)(2n + 1)(2n)!

(2n +2)!

0<

(n))?
(2n)!"

Consider b,, =
Then

(n+1)2(n!)?
_ (2n42)(2n+1)(2n)!
o (n!)2

(2n)!

_ (n+1)%(n!)? (2n)!
(2n+2)(2n+1)(2n)!  (n!)?

B (n+1)?

2+ 1)(2n+ 1)

Thus
(n+1)2 1

lim 22— ==

= < L
naoo 2(n+1)(2n+1) 4

n—oo b,
Therefore, by Ratio Test, the series > b, converges, and hence by Comparison test, the
series Y a, converges.

Two sequences of real numbers (a,,) and (b,) satisfy a,, = b, for all n > k, for some natural
number k. Show that ) a, converges if and only if ) b,, converges. 3]

Soln.: Let s, denote the sequence of partial sums of the series > a,, and let ¢,, denote the
sequence of partial sums of the series Y b,. Further let sy = a and t;_; = 8. Observe
that for all n > k, s, — a =t, — 8. (Since a,, = b,, for all n > k.)

Assume )b, converges. By definition, lim¢, exists. Using this above, lims,, = o — § +
limt, also exists. Hence ) a, converges. Similarly, we can say that »_ b, converges if
> a, converges.
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(b)

Soln.:

We have a, = b, for all n > k, for some natural number k. Let S, = Zam and

m=1

T, = Z by. Then, for n > m > k, we have
m=1

|Sn_Sm| = |am+1—|—am+2+...—|—an|
= |bmi1 + by + ...+ by
= |Tn _Tm’

Now, suppose Y a, converges. Then by the Cauchy Criterion, for ¢ > 0 there exists
N € N such that
|Sp — Sm| <€ forall n>m>N.

Consider M = max (N, k). Then for every € > 0, we have
T, — Ton| = [Sn — S| <€ foral n>m> M.

Therefore, by Cauchy criterion, the sequence of partial sums Y b, is convergent.

Similarly, we can say that ) a, converges if > b, converges.

Let h: R — R be a function. For each of the statements given below, prove it if it is true.
If the statement is false, give a counter—example.

i. If h is continuous, for every unbounded sequence of real numbers (z,) the sequence
(h(x,)) is unbounded. 1]
Soln.: Counter Example-1: The constant function h(x) = 2.5 is continuous, the
sequence x, = n is unbounded but the sequence h(x,) = 2.5 is bounded.

Counter Example-2: The sine function h(x) = sin(x) is continuous, the sequence
x, = 2n - 7 is unbounded, but the sequence h(z,) = 0 is bounded.

Any valid counter example where h is ‘known’ to be continuous from class, where
unboundedness of x,, is known from class and boundedness of h(x,) is evident will
get a mark.

ii. If h is continuous, for every bounded sequence of real numbers (y,) the sequence
(h(yn)) is bounded. 2]
Soln.: The statement is true. If (y,) is a bounded sequence, there exists a real number
B > 0 such that |y,| < B. Consider the restriction of h to the interval [—B, B,
hg : [—B, B] = R (defined via the usual hg(z) = h(z)). hp is continuous as it is the
restriction of a continuous function. Range(hp) is bounded as hpg is continuous and
its domain of definition is a compact interval. Therefore, (h(y,)) C Range(hgp) is
bounded.

Let h : [0,1] — R be a continuous function. If (z,) is a cauchy sequence in [0, 1], show
that the sequence (h(z,)) converges. 2]
Soln.: The statement is true. From the proposition that every cauchy sequence con-
verges, the given sequence z, being cauchy converges to a real number z, say. From the
inequalities 0 < z, < 1, and z, — z, we get 0 < z < 1. Conclude that z € [0,1]. By
sequential criterion for continuity h(z,) — h(z).

Let p : R — R be the polynomial function p(z) = %x5 — 4002* 4+ 302 — 200022 + x — 100.
Show that there exists a ¢ € R such that p(c) = 0. 2]
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Soln.: Note the following inequalities:

11,
5 2"
= f—0x4 > 400x* for every x > 4,000.
72
= Exg > —302° for every z > 0.
3
= f—OxQ > 20002 for every x > /20, 000.
zt
= l—ox > —x for every x > 0.
5
_ :1E_0 > 100 for every = > ¢/1,000.

Adding these 5 inequalities, 5 - £ - 22° = $2° > 400z* — 30z* + 2000z* — z 4 100 for every

x > max(4000, 0, /20,000, 0, ¢/1,000) = 4000. Thus we have proved, for instance, that
p(4001) > 0. Or using any method, find a real number § and verify by calculation that

p(B) > 0.

By substitution —100 = p(0) < 0 or any other valid « such that p(a) < 0. Mention p is
continuous and apply Intermediate value theorem to get p(c) = 0 for some ¢ € (0,4001),
in our calculation or ¢ € (a, ), assuming your a < f3.

Some calculations for your reference are listed below. These are not expected on your test
booklet. But they are given to give an idea of where p is positive and where it is negative.
This table is also useful for graders as a quick reference to check some of the calculations
of the students.
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X p(x)
~10000 -54000030200000010100.0
22000 -22400248000002100.0
-1000 -900032000001100.0
-500 -40629250000600.0
-100 ~45050000200.0
-50 -2665000150.0
-10 ~4280110.0

1 -2531.5

0 -100.0

0.5 -620.73438

1 -2468.5

10 -4120090.0

20 -62960080.0

50 ~2345000050.0

100 -34990000000.0
200 ~479839999900.0
300 -2024369999800.0
500 -9371749999600.0
700 -11995689999400.0
799.93 -254790015.60049
799.93124 -946729.14402
799.93125 1100406.92678
799.94 1792422937.23531
800 14080000700.0
1000 100028000000900.0
2000 9600232000001900.0
4001 410139771097971531.5

Method-2 Every odd degree polynomial, whose co-efficients are real numbers, has a real
root. This was proved as a tutorial problem. Hence p has a real root.
Let q(z) = /2022 + (42 —1)(3z — 1)(22 — 1)(2® — 1) (2 +2)(z +3) (2 +4). Show that there
exist at least 7 real numbers «; such that ¢'(o;) =0 for i € {1,2,...,7}. 3]
Soln.: Method-1:
Define {c¢;}} as follows:

1

1 1
01:—4<02:—3<03:—2<C4:—1<C5:Z<06:§<C7:§<08:]_.

Note that g(c;) = /2022 for every 1 < i < 8. If the student finds only a couple, or three
or four etc. of ¢;, then stepmarks may be given proportionately.

We can apply Rolle’s Theorem as ¢ is continuous and differentiable. In particular,
applying Rolle’s Theorem to the 7 intervals [¢;, ¢;q] for ¢ € {1,2,...,7}, we get the
required 7 real numbers «; such that ¢’(o;) = 0.  Note that while applying Rolle’s
Theorem, we have used the observation that restrictions of a continuous and differentiable

function are continuous and differentiable. Method-2:
Define {c;}§ as follows:
1 1 1
01:—4<02:—3<03:—2<C4:—1<C5:Z<06:§<C7:§<68:]_.

Need to show, by calculations that ¢'(c1), ¢'(¢2), ¢'(¢3), ¢ (ca), - . . ¢'(cs) are alternately neg-
ative, positive, negative, positive, .... If the student finds only a couple, or three or four
etc. of ¢;, then stepmarks may be given proportionately.
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We can apply Intermediate Value Theorem to ¢’ as ¢’ is continuous. = Now, applying
Intermediate Value Theorem to the 7 intervals [¢;, ¢;41] for ¢ € {1,2,...,7}, we get the

required 7 real numbers «; such that ¢’(o;) = 0. Note that while applying Intermediate
Value Theorem, we have used the observation that restrictions of a continuous function
are continuous.

5. Define ¢

‘R — R as:

(z) —x, ifzx<0
€Tr) =
g Vv, ifz>0.

(a) Using Weierstrass’ Criterion, show that ¢ is continuous at x = 0. 3]
Soln.:

Graph of g:

5

0 ) 10 15 20

Preliminary Observations: Note that ¢g(0) = 0. We give examples of different values of e
and explore to propose suitable values of § such that if |z — 0| < 4, then |g(z) — ¢(0)| =

l9(x)] <e.

i.

11.

1ii.

1v.

Suppose € = 4 is given. To make |g(x)| < 4, guess from the graph the two trivia: If =
is negative, then x > —4 ensures g(z) = —x < 4. If z is positive, then x < 16 ensures
g(x) = v/x < 4. Thus § =4 = min(| — 4/, 16) would “work” for ¢ = 4. Of course, any
number smaller than 4 would “work” as delta.

Suppose € = 2 is given. To make |g(x)| < 2, guess from the graph the two trivia: If =
is negative, then x > —2 ensures g(z) = —z < 2. If = is positive, then = < 4 ensures
g(z) = /x < 2. Thus 6 = 2 = min(| — 2|,4) would “work” for ¢ = 2. Of course, any
number smaller than 2 would “work” as delta.

Suppose € = 0.5 is given. To make |g(z)| < 0.5, guess from the graph the two trivia:
If z is negative, then x > —0.5 ensures g(x) = —z < 0.5. If z is positive, then
r < 0.25 = 0.5 ensures g(z) = /x < 0.5. Thus § = .25 = min(| — 0.5[,0.25) would
“work” for e = 2. Of course, any number smaller than .25 would “work” as delta.
Suppose € = 0.25 is given. To make |g(z)| < 0.25, guess from the graph the two trivia:
If x is negative, then x > —0.25 ensures g(z) = —x < 0.25. If = is positive, then
z < 0.0625 = 0.252 ensures g(z) = /7 < 0.25. Thus § = .0625 = min(|—0.25], 0.0625)
would “work” for e = .25. Of course, any number smaller than .0625 would “work”
as delta.

What did you learn from the above observations? From the list of observations above,

one

2«

can guess that §; = € “works” for negative values of x and ds = €* “works” for non—

negative values of x. Therefore take § = min(dy,d2) > 0. Next assume z is any real
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number satisfying |z| < . Then: |z| < d; and |z| < d2. The following two conclusions are
true:

If  is negative, |g(z)| = | — x| < § < 6, = e. If z is non—negative, |g(z)| = v/x < e. Note
that in writing v/z < € from |z| < § < d; = €* we are using that the square-root function
is monotonically increasing on non—negative real numbers.

Thus we have proved continuity, using Weiserstrass criterion.
Method-2

Given a real € > 0, define ¢y = min(e, 1). Take § = €2. Next assume x is any real number
satisfying |z| < 6. Then: |z| < €3. The following two conclusions are true:

If x is negative, |g(z)| = | — x| < € < € < e. Note that in writing €2 < €, we have
used g < 1 If x is non-negative, |g(z)| = /& < ey < €. Note that in writing \/x < €
from x? < €3 we are using that the square-root function is monotonically increasing on
non-negative real numbers.

Using the definition, show that g is not differentiable at 0.

{Warning: Do NOT use left/right-hand limits. } 2]
Soln.:

Let A be a domain in R and ¢ € A. Consider a function f :— R.

WC-lim: We say Weierstrass Criterion holds for a real number L if:

For every real € > 0, there exists a real § > 0 such that for all 0 < |z —¢| < § it
should be true that |f(z) — f(c)| <e.

SC-lim: We say Sequential Criterion holds for a real number L if:

For every sequence of real numbers x,, — ¢ ( with z,, # ¢, for every n ) we have
lim f(x,) — L.

Recall that we say lim, . f(z) = L for a real number L if WC-lim holds. You could try
to prove that WC-lim and SC-lim are equivalent. Here, for the purposes of this question,
can you prove: WC-lim implies SC-lim?

{Hint: Recall the proof of Weierstrass’ Criterion implies Sequential Criterion (for conti-
nuity at a point) discussed in detail in class and available on Lecture Notes. A verbatim
copy of that proof proves the required proposition.}

Assume g is differentiable at 0. Then lim, “’(OL})L_Q(O) = L, exists for some real L. We

apply SC-lim: Take the sequence h, = #, note that h,, — 0, that none of the h, = 0.

\/1/n? . . .
However, lim g(h"})lgg(o) = 1/12 — = limn does not exist as the sequence is unbounded.
Method-2

g(0+h)—g(0)
h

Assume g¢ is differentiable at 0. Then limy_, = L, exists for some real L.

Case (i) L = —1. Take e = 1. Then by our assumption of differentiability, there exists a

real § > 0 such that for all 0 < |h| < d, we are assured of having |g(OL})L_9(O)—(—1)| <e=1.

Take any h € (0,0) and the term |M — (—1)] = \/LH + 1 > 1, a contradiction to
the assurance. Case (ii) L # —1. Take ¢ = @ > 0. Then by our assumption of
differentiability, there exists a real ¢ > 0 such that for all 0 < |h| < §, we are assured of
having \"(OLW —Ll<e= @ Take any h € (—9,0) and the term ]w —L|=

| —L|=|L+1]>e= @, a contradiction to the assurance.

6. Let f:[0,2] — R be given by

fz) =

~1, fo<a<l,
1, ifl<z<2
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(a)

Use the definition of Riemann integrability to show that f is integrable on [0, 2]. (3]
Soln.: Consider a partition P of [0, 2]

D=2 <21 <Xy <+ <3 <Tjyp1 <+ < xp =2

Define I to be the unique index in the range {0,1,2,...,n — 1} such that x; <1 < z4;.
Note that such I is well-defined and unique.

Let {& 1}, be any collection of tags for P. Note that f(&) = —1 for all 1 < i < I, that
fl&)=1for I+2<i<n.

Therefore, the Riemann sum

S(f,P) = Zf(fz’)(fﬁi—%—l)

= Zf(fz‘)( — 1) + (&) (@141 — 21) Z (&) (@i — xiq)

(=)(xr —x0) + f(€rs1) (@ — 2r) + (1) (200 — 2r11)
(=) (27 = 0) + f(€re1)(Tr41 — 21) + (1) (2 — 2111).
(

Rewriting (—1)z; as (—=1) 4+ (1 — ) and 2 — z74q as 1 — (x4 — 1).

|S(f,P) =0 1) -ar+ f(&r) @y — o) + (1) - (2 = 2r44)]
D+ (1 =)+ f(§ra) (e — o) + (1) - (1 = (2741 — 1))

(=
(=
(1 —zr) + f(§r)(@r —21) + (1 — 2741)]
(
I¢

L—zp)| + | f(r) (@ — 21)| + (1 — 2141)]

<
< @rpr — @)+ (€)@ — 20)| + [(2re — 21)]

Since 1 < &741, we have f(£711) = 1. Therefore,
IS(f. P = (@i — an)| + (w11 — ) + (w141 — 20)] -

Now, given any real ¢ > 0, choose 0 = §. Let P = {[z;_1,2;] | 0 < ¢ < n} be a partition
of [0,2] such that ||P|| < d. Therefore |x; — x;_1| < 0, for all 7.
Thus,

|S(f,P)—=0|=|S(f,P)|<d+0+0<3d=e

Hence, f is Riemann integrable on [0, 2].

Explain why f is Riemann integrable on [0, z], for every x € [0, 2]. [0.5]
Soln.: Recall: If f is integrable on an interval S, then it is integrable on every
subinterval [ C S.

Define F': [0,2] — R via F(z) = [; f. Show that F' is continuous on [0, 2]. [1.5]

Soln.: Let y,z € [0, 2] Wlth y < z. Then,

s [ [ o frerns [

Therefore, F(z) — F(y) = fyZ f. We know that —1 < f(x) <1 for all x € [0,2]. Therefore,

—y)éfzfé(l)(z—y%
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and hence |F(2) = F(y)| = | [* /1 < |2 — .
To check continuity of F' at © = a € [0,2]: Let ¢ > 0. Choose § = e¢. Then for
€ (a—da+0)n0,2,
|F(z) — F(a)| < |z —a] <d=¢e.

Therefore, F' is continuous at a.
For better understanding of F', show that F(z) = —x for z € [0,1] and F(z) = z — 2 for
z € l,2].

7. (a) Write down the radii of convergence of each of the power series given below. You do not

have to justify your answer for this part.

<9n2)n$n

(8n) a™

Y0
i, >
Soln.:
L Y7 (9n?)nan,
i. > (8n)"z",

r=20
r=0

Consider 6 : (0,00) — (0,00) given by 0(x)

0~ is continuous.

i, 30
iv. ZTO

i, 30
iv. >

= 2

1 1
+ -

"

DIk

Show that € is bijective and that
3]

Soln.: To show that 6 is one-to-one, suppose that 6(z1) = (x2) for some 1, x5 € (0, 00).

Then

T2

ASI2>O,—<i+

1
2

1111
2 1 2 1
(1] 1 (1 1\* 1
I 2 4_ T2 2 4
11 w—12+%> OR
— 2= 1,1
22
> < 0. Therefore,
1 1 1 1
— 4 )= =42 = 2 =20
T 2 ) 2

Therefore 6 is injective.
To show that 6 is surjective, we need to show that for any y € (0,00), there exists an
x € (0,00) such that #(z) = y. Let y € (0,00). Then we can solve the equation 6(z) =y

1+£1+4y
r=————

for x to get

Since y > 0, vt V;y“‘y

> 0, so # is surjective.

2y

Therefore, 0 is bijective. And the inverse function is given by

0~ (y)

2y

1+ 1+ 4y
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We will show that 67! is continuous using Sequential Criterion:
Let (y,) be a convergent sequence in (0, 00), such that y, — y and y € (0, 00). Consider
the sequence z,, = TVt w. Since y, # 0 and y # 0, by applying ratio of limits, we get

1+1+ 4y,
2y,

~ lim (1 + /T + 4yn)

B lim(2y,,)

I+ VT+ Ay

2y

lim x,, = lim

which lies in (0,00). Hence the sequence (x,) = (071(y,)) is convergent. As (y,) is
arbritrary, by sequential criterion, ! is continuous.

Soln.: (Alternate-1: Continuity Using Inverse function theorem):
Let 0 < x < y be real numbers. Then

1 1
<y = —< =
y x
1 1 1
— —2+— —2+—
y x x
= 0(y) < 0(x)

Thus, 6 is a strictly decreasing function. Clearly, 6 is continuous. Therefore, by Contin-
uous Inverse Function Theorem, §~! is monotonic and continuous.

Note: You still need to prove bijectivity, as shown earlier.

Soln.: (Injectivity using derivatives):

It is enough to show that 6 is strictly monotonic. To show this, consider §'(x) = — 5 — —5.
Note that 6'(z) < 0, for all x € (0,00). This proves 6 is injective.

Note: You still need to prove surjectivity, continuity etc.

—Paper Ends—
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