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Questions:

1. (a) Let a1 = 2.5. For each natural n, define an+1 = 0.9an + 2022. Show that the sequence
(an) converges and find the limit. [2]

Soln.: Method-1

A few calculations:

n an
1 2.5
2 2024.25
3 3843.825
4 5481.4425
5 6955.2982
6 8281.7683
7 9475.5914
8 10550.0322
9 11517.0289
10 12387.3260

makes one suspect that an is monotonically increasing. A “high-school” rush of taking
ℓ = lim an on an+1 = 0.9an + 2022 yields: ℓ = 0.9ℓ + 2022, i.e. ℓ = 20, 220. This doesn’t
prove the answer is 20,220. Do you realize why?

Check a2 = 2024.25 > 2.5 = a1. Assume ak+1 > ak. Now, ak+2 = 0.9ak+1 + 2022 >
0.9ak + 2022 = ak+1. By Principle of Mathematical Induction, (an) is a monotonically
increasing sequence. Check a1 < 2022. Assume ak < 20, 220. Now, ak+1 = 0.9ak +
2022 < 0.9(20, 220) + 2022 = 20, 220. By Induction, (an) is bounded above by 20,220.
(an) being an increasing and bounded-above sequence converges. High-School Rush:
lim an+1 = 0.9 lim an + 2022 implies ℓ = 20, 220.

Method-2

By iterating, check and guess that

a1 = 2.5,

a2 = (0.9)(2.5) + 2022,

a3 = (0.9)2(2.5) + (1 + 0.9)2022,

a4 = (0.9)3(2.5) + (1 + 0.9 + 0.92)2022,

. . . = . . .

an = (0.9)n−1(2.5) + (1 + 0.9 + · · ·+ 0.9n−2)2022 for n ≥ 3.

Applying induction, the given sequence for all n ≥ 3 satisfies

an = 2.5bn + 2022cn

where bn = (0.9)n−1

and cn = 1 + 0.9 + · · ·+ 0.9n−2

Both lim bn & lim cn exist and lim bn = 0 and lim cn = 1
1−0.9

= 10.

By elementary rules of limits, lim an = 2.5(0) + 2022(10) = 20, 220.

(b) Using axioms for R, prove that the function λ : R → R given by λ(x) = x3 is injective.[3]

Soln.: Suppose λ is NOT injective, i.e., there exist x, y ∈ R, x ̸= y with λ(x) = λ(y), i.e.,
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x3 = y3.

x3 = y3

⇒ x3 − y3 = 0 Add (−y3) to both sides

⇒ (x− y)(x2 + xy + y2) = 0 Use distrib. of multip. over add.)

⇒ x− y = 0–OR–(x2 + xy + y2) = 0 Recall: ab = 0 ⇒ a = 0 OR b = 0

Case (I) x−y = 0. Add y to both sides and using associativity and the fact that −y is the
additive inverse of y, we get (x− y)+ y = 0+ y ⇒ (x+(−y))+ y = y ⇒ x+((−y)+ y) =
y ⇒ x + 0 = y ⇒ x = y, a contradiction to our assumption that x ̸= y. Case (II)
x2 + xy + y2 = 0 Method-1:

Next, recall that we have proved in class/tutorial that for a real number a ̸= 0, a2 > 0,
and also, a2 = 0 ⇔ a = 0. Using the latter, we have that for two real numbers a, b,
a2 + b2 ≥ 0 and a2 + b2 = 0 implies a = b = 0.

Completing the square in x2+xy+ y2 = (x+ 1
2
y)2+ 3

4
y2. Take a = (x+ 1

2
y) and b =

√
3
4
y

and from the above work, we have a2 + b2 = x2 + xy + y2 = 0. So we get a = b = 0, i.e.

x+ 1
2
y =

√
3
4
y = 0. From this conclude y = 0 and then x = 0.

Method-2:

Case (i) 0 ≤ x < y: Then 0 ≤ x2+xy and 0 < y implies 0 < y2. So that 0 < x2+xy+ y2,
i.e., a contradiction to first-step.

Case (ii) x < 0 ≤ y:

Case(.) y + x > 0: x2 + xy + y2 = x2 + (x+ y)y > 0, a contradiction to first-step,

Case(..) y + x = 0: x2 + xy + y2 = x2 + (x+ y)y > 0, a contradiction to first-step.

Case(...) y+ x < 0: : x2 + xy+ y2 = (x+ y)x+ y2 > 0, a contradiction to first-step.

Case (iii) x < y ≤ 0: Similar to Case (i).

Method-3:

Case (i) y = 0: Then x2 = 0 implies x = 0. A contradiction to x ̸= y.

Case (ii) y ̸= 0: Then by dividing x2 + xy + y2 = 0 by y2 ̸= 0, get λ2 + λ + 1 = 0 where
λ = x

y
.

If you follow completing the square, as in Method-1 and prove that there are no solutions
x2+xy+y2 = 0, then you get full marks, i.e. Note: If you use discriminant of a quadratic
(you are not using axioms and immediately derived properties), you lose 1/2 mark, i.e.
you get only 0.5 marks, instead of 1.

2. (a) Show that the series
∑ (n!)2

(2n+2)!
converges. [2]

Soln.: Write an = (n!)2

(2n+2)!
. Then

an+1

an
=

((n+1)!)2

(2(n+1)+2)!

(n!)2

(2n+2)!

=
(n+ 1)2

(2n+ 3)(2n+ 4)
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Now taking limit as n → ∞,

lim
n→∞

an+1

an
= lim

n→∞

(
n2
(
1 + 2

n
+ 1

n2

)
n
(
2 + 3

n

)
n
(
2 + 4

n

))

= lim
n→∞

(
1 + 2

n
+ 1

n2(
3
n
+ 2
) (

4
n
+ 2
))

= lim
n→∞

(
1 + 2

n
+ 1

n2(
3
n
+ 2
) (

4
n
+ 2
))

=
limn→∞ 1 + 2

n
+ 1

n2

limn→∞
(
3
n
+ 2
) (

4
n
+ 2
)

=
1

4
< 1.

Therefore, by Ratio Test, the series converges absolutely. As an > 0 for all n, the series
converges.

Soln.: Using Comparison test:

Note that for each n ∈ N,

0 <
(n!)2

(2n+ 2)!
=

(n!)2

(2n+ 2)(2n+ 1)(2n)!
<

(n!)2

(2n)!
.

Consider bn = (n!)2

(2n)!
.

Then

bn+1

bn
=

((n+1)!)2

(2(n+1))!

(n!)2

(2n)!

=

(n+1)2(n!)2

(2n+2)(2n+1)(2n)!

(n!)2

(2n)!

=
(n+ 1)2(n!)2

(2n+ 2)(2n+ 1)(2n)!
· (2n)!
(n!)2

=
(n+ 1)2

2(n+ 1)(2n+ 1)

Thus

lim
n→∞

bn+1

bn
= lim

n→∞

(n+ 1)2

2(n+ 1)(2n+ 1)
=

1

4
< 1.

Therefore, by Ratio Test, the series
∑

bn converges, and hence by Comparison test, the
series

∑
an converges.

(b) Two sequences of real numbers (an) and (bn) satisfy an = bn for all n ≥ k, for some natural
number k. Show that

∑
an converges if and only if

∑
bn converges. [3]

Soln.: Let sn denote the sequence of partial sums of the series
∑

an and let tn denote the
sequence of partial sums of the series

∑
bn. Further let sk−1 = α and tk−1 = β. Observe

that for all n ≥ k, sn − α = tn − β. (Since an = bn, for all n ≥ k.)

Assume
∑

bn converges. By definition, lim tn exists. Using this above, lim sn = α − β +
lim tn also exists. Hence

∑
an converges. Similarly, we can say that

∑
bn converges if∑

an converges.
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Soln.:

We have an = bn for all n ≥ k, for some natural number k. Let Sn =
n∑

m=1

am and

Tn =
n∑

m=1

bm. Then, for n > m ≥ k, we have

|Sn − Sm| = |am+1 + am+2 + ...+ an|
= |bm+1 + bm+2 + ...+ bn|
= |Tn − Tm|

Now, suppose
∑

an converges. Then by the Cauchy Criterion, for ϵ > 0 there exists
N ∈ N such that

|Sn − Sm| < ϵ for all n > m ≥ N.

Consider M = max (N, k). Then for every ϵ > 0, we have

|Tn − Tm| = |Sn − Sm| < ϵ for all n > m ≥ M.

Therefore, by Cauchy criterion, the sequence of partial sums
∑

bn is convergent.

Similarly, we can say that
∑

an converges if
∑

bn converges.

3. (a) Let h : R → R be a function. For each of the statements given below, prove it if it is true.
If the statement is false, give a counter–example.

i. If h is continuous, for every unbounded sequence of real numbers (xn) the sequence
(h(xn)) is unbounded. [1]
Soln.: Counter Example-1: The constant function h(x) ≡ 2.5 is continuous, the
sequence xn = n is unbounded but the sequence h(xn) = 2.5 is bounded.
Counter Example-2: The sine function h(x) = sin(x) is continuous, the sequence
xn = 2n · π is unbounded, but the sequence h(xn) = 0 is bounded.
Any valid counter example where h is ‘known’ to be continuous from class, where
unboundedness of xn is known from class and boundedness of h(xn) is evident will
get a mark.

ii. If h is continuous, for every bounded sequence of real numbers (yn) the sequence
(h(yn)) is bounded. [2]
Soln.: The statement is true. If (yn) is a bounded sequence, there exists a real number
B > 0 such that |yn| ≤ B. Consider the restriction of h to the interval [−B,B],
hB : [−B,B] → R (defined via the usual hB(x) = h(x)). hB is continuous as it is the
restriction of a continuous function. Range(hB) is bounded as hB is continuous and
its domain of definition is a compact interval. Therefore, (h(yn)) ⊂ Range(hB) is
bounded.

(b) Let h : [0, 1] → R be a continuous function. If (zn) is a cauchy sequence in [0, 1], show
that the sequence (h(zn)) converges. [2]

Soln.: The statement is true. From the proposition that every cauchy sequence con-
verges, the given sequence zn being cauchy converges to a real number z, say. From the
inequalities 0 ≤ zn ≤ 1, and zn → z, we get 0 ≤ z ≤ 1. Conclude that z ∈ [0, 1]. By
sequential criterion for continuity h(zn) → h(z).

4. (a) Let p : R → R be the polynomial function p(x) = 1
2
x5 − 400x4 +30x3 − 2000x2 + x− 100.

Show that there exists a c ∈ R such that p(c) = 0. [2]
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Soln.: Note the following inequalities:

1

5
· 1
2
x5

=
x

10
x4 > 400x4 for every x > 4, 000.

=
x2

10
x3 > −30x3 for every x > 0.

=
x3

10
x2 > 2000x2 for every x > 3

√
20, 000.

=
x4

10
x1 > −x for every x > 0.

=
x5

10
> 100 for every x > 5

√
1, 000.

Adding these 5 inequalities, 5 · 1
5
· 1
2
x5 = 1

2
x5 > 400x4 − 30x3 + 2000x2 − x+ 100 for every

x > max(4000, 0, 3
√
20, 000, 0, 5

√
1, 000) = 4000. Thus we have proved, for instance, that

p(4001) > 0. Or using any method, find a real number β and verify by calculation that
p(β) > 0.

By substitution −100 = p(0) < 0 or any other valid α such that p(α) < 0. Mention p is
continuous and apply Intermediate value theorem to get p(c) = 0 for some c ∈ (0, 4001),
in our calculation or c ∈ (α, β), assuming your α < β.

Some calculations for your reference are listed below. These are not expected on your test
booklet. But they are given to give an idea of where p is positive and where it is negative.
This table is also useful for graders as a quick reference to check some of the calculations
of the students.
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x p(x)
-10000 -54000030200000010100.0
-2000 -22400248000002100.0
-1000 -900032000001100.0
-500 -40629250000600.0
-100 -45050000200.0
-50 -2665000150.0
-10 -4280110.0
-1 -2531.5
0 -100.0

0.5 -620.73438
1 -2468.5
10 -4120090.0
20 -62960080.0
50 -2345000050.0
100 -34990000000.0
200 -479839999900.0
300 -2024369999800.0
500 -9371749999600.0
700 -11995689999400.0

799.93 -254790015.60049
799.93124 -946729.14402
799.93125 1100406.92678

799.94 1792422937.23531
800 14080000700.0
1000 100028000000900.0
2000 9600232000001900.0
4001 410139771097971531.5

Method-2 Every odd degree polynomial, whose co-efficients are real numbers, has a real
root. This was proved as a tutorial problem. Hence p has a real root.

(b) Let q(x) =
√
2022+(4x−1)(3x−1)(2x−1)(x2−1)(x+2)(x+3)(x+4). Show that there

exist at least 7 real numbers αi such that q′(αi) = 0 for i ∈ {1, 2, . . . , 7}. [3]

Soln.: Method-1:

Define {ci}81 as follows:

c1 = −4 < c2 = −3 < c3 = −2 < c4 = −1 < c5 =
1

4
< c6 =

1

3
< c7 =

1

2
< c8 = 1.

Note that q(ci) =
√
2022 for every 1 ≤ i ≤ 8. If the student finds only a couple, or three

or four etc. of ci, then stepmarks may be given proportionately.

We can apply Rolle’s Theorem as q is continuous and differentiable. In particular,
applying Rolle’s Theorem to the 7 intervals [ci, ci+1] for i ∈ {1, 2, . . . , 7}, we get the
required 7 real numbers αi such that q′(αi) = 0. Note that while applying Rolle’s
Theorem, we have used the observation that restrictions of a continuous and differentiable
function are continuous and differentiable. Method-2:

Define {ci}81 as follows:

c1 = −4 < c2 = −3 < c3 = −2 < c4 = −1 < c5 =
1

4
< c6 =

1

3
< c7 =

1

2
< c8 = 1.

Need to show, by calculations that q′(c1), q
′(c2), q

′(c3), q
′(c4), . . . q

′(c8) are alternately neg-
ative, positive, negative, positive, . . .. If the student finds only a couple, or three or four
etc. of ci, then stepmarks may be given proportionately.
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We can apply Intermediate Value Theorem to q′ as q′ is continuous. Now, applying
Intermediate Value Theorem to the 7 intervals [ci, ci+1] for i ∈ {1, 2, . . . , 7}, we get the
required 7 real numbers αi such that q′(αi) = 0. Note that while applying Intermediate
Value Theorem, we have used the observation that restrictions of a continuous function
are continuous.

5. Define g : R → R as:

g(x) =

{
−x, if x < 0√
x, if x ≥ 0.

(a) Using Weierstrass’ Criterion, show that g is continuous at x = 0. [3]

Soln.:

Graph of g:

−5 0 5 10 15 20

0

1

2

3

4

5

Preliminary Observations: Note that g(0) = 0. We give examples of different values of ϵ
and explore to propose suitable values of δ such that if |x − 0| < δ, then |g(x) − g(0)| =
|g(x)| < ϵ.

i. Suppose ϵ = 4 is given. To make |g(x)| < 4, guess from the graph the two trivia: If x
is negative, then x > −4 ensures g(x) = −x < 4. If x is positive, then x < 16 ensures
g(x) =

√
x < 4. Thus δ = 4 = min(| − 4|, 16) would “work” for ϵ = 4. Of course, any

number smaller than 4 would “work” as delta.

ii. Suppose ϵ = 2 is given. To make |g(x)| < 2, guess from the graph the two trivia: If x
is negative, then x > −2 ensures g(x) = −x < 2. If x is positive, then x < 4 ensures
g(x) =

√
x < 2. Thus δ = 2 = min(| − 2|, 4) would “work” for ϵ = 2. Of course, any

number smaller than 2 would “work” as delta.

iii. Suppose ϵ = 0.5 is given. To make |g(x)| < 0.5, guess from the graph the two trivia:
If x is negative, then x > −0.5 ensures g(x) = −x < 0.5. If x is positive, then
x < 0.25 = 0.52 ensures g(x) =

√
x < 0.5. Thus δ = .25 = min(| − 0.5|, 0.25) would

“work” for ϵ = 2. Of course, any number smaller than .25 would “work” as delta.

iv. Suppose ϵ = 0.25 is given. To make |g(x)| < 0.25, guess from the graph the two trivia:
If x is negative, then x > −0.25 ensures g(x) = −x < 0.25. If x is positive, then
x < 0.0625 = 0.252 ensures g(x) =

√
x < 0.25. Thus δ = .0625 = min(|−0.25|, 0.0625)

would “work” for ϵ = .25. Of course, any number smaller than .0625 would “work”
as delta.

What did you learn from the above observations? From the list of observations above,
one can guess that δ1 = ϵ “works” for negative values of x and δ2 = ϵ2 “works” for non–
negative values of x. Therefore take δ = min(δ1, δ2) > 0. Next assume x is any real
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number satisfying |x| < δ. Then: |x| < δ1 and |x| < δ2. The following two conclusions are
true:

If x is negative, |g(x)| = | − x| < δ ≤ δ1 = ϵ. If x is non–negative, |g(x)| = √
x < ϵ. Note

that in writing
√
x < ϵ from |x| < δ ≤ δ2 = ϵ2 we are using that the square-root function

is monotonically increasing on non–negative real numbers.

Thus we have proved continuity, using Weiserstrass criterion.

Method-2

Given a real ϵ > 0, define ϵ0 = min(ϵ, 1). Take δ = ϵ20. Next assume x is any real number
satisfying |x| < δ. Then: |x| < ϵ20. The following two conclusions are true:

If x is negative, |g(x)| = | − x| < ϵ20 ≤ ϵ0 ≤ ϵ. Note that in writing ϵ20 ≤ ϵ0, we have
used ϵ0 ≤ 1 If x is non–negative, |g(x)| = √

x < ϵ0 < ϵ. Note that in writing
√
x < ϵ0

from x2 < ϵ20 we are using that the square-root function is monotonically increasing on
non–negative real numbers.

(b) Using the definition, show that g is not differentiable at 0.

{Warning: Do NOT use left/right–hand limits.} [2]

Soln.:

Let A be a domain in R and c ∈ A. Consider a function f :→ R.
WC-lim: We say Weierstrass Criterion holds for a real number L if:

For every real ϵ > 0, there exists a real δ > 0 such that for all 0 < |x − c| < δ it
should be true that |f(x)− f(c)| < ϵ.

SC-lim: We say Sequential Criterion holds for a real number L if:
For every sequence of real numbers xn → c ( with xn ̸= c, for every n ) we have
lim f(xn) → L.

Recall that we say limx→c f(x) = L for a real number L if WC-lim holds. You could try
to prove that WC-lim and SC-lim are equivalent. Here, for the purposes of this question,
can you prove: WC-lim implies SC-lim?

{Hint: Recall the proof of Weierstrass’ Criterion implies Sequential Criterion (for conti-
nuity at a point) discussed in detail in class and available on Lecture Notes. A verbatim
copy of that proof proves the required proposition.}
Assume g is differentiable at 0. Then limh→0

g(0+h)−g(0)
h

= L, exists for some real L. We
apply SC-lim: Take the sequence hn = 1

n2 , note that hn → 0, that none of the hn = 0.

However, lim g(hn)−g(0)
hn

=

√
1/n2

1/n2 = limn does not exist as the sequence is unbounded.
Method-2

Assume g is differentiable at 0. Then limh→0
g(0+h)−g(0)

h
= L, exists for some real L.

Case (i) L = −1. Take ϵ = 1. Then by our assumption of differentiability, there exists a

real δ > 0 such that for all 0 < |h| < δ, we are assured of having |g(0+h)−g(0)
h

−(−1)| < ϵ = 1.

Take any h ∈ (0, δ) and the term |g(0+h)−g(0)
h

− (−1)| = 1√
h
+ 1 > 1, a contradiction to

the assurance. Case (ii) L ̸= −1. Take ϵ = |L+1|
2

> 0. Then by our assumption of
differentiability, there exists a real δ > 0 such that for all 0 < |h| < δ, we are assured of

having |g(0+h)−g(0)
h

−L| < ϵ = |L+1|
2

. Take any h ∈ (−δ, 0) and the term |g(0+h)−g(0)
h

−L| =
|−h
h

− L| = |L+ 1| > ϵ = |L+1|
2

, a contradiction to the assurance.

6. Let f : [0, 2] → R be given by

f(x) =

{
−1, if 0 ≤ x ≤ 1,

1, if 1 < x ≤ 2.
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(a) Use the definition of Riemann integrability to show that f is integrable on [0, 2]. [3]

Soln.: Consider a partition P of [0, 2]

0 = x0 < x1 < x2 < · · · < xi < xi+1 < · · · < xn = 2

Define I to be the unique index in the range {0, 1, 2, . . . , n− 1} such that xI ≤ 1 < xI+1.
Note that such I is well–defined and unique.

Let {ξi}ni=1 be any collection of tags for P . Note that f(ξi) = −1 for all 1 ≤ i ≤ I, that
f(ξi) = 1 for I + 2 ≤ i ≤ n.

Therefore, the Riemann sum

S(f,P) =
n∑

i=1

f(ξi)(xi − xi−1)

=
I∑

i=1

f(ξi)(xi − xi−1) + f(ξI+1)(xI+1 − xI) +
n∑

i=I+2

f(ξi)(xi − xi−1)

= (−1)(xI − x0) + f(ξI+1)(xI+1 − xI) + (1)(xn − xI+1)

= (−1)(xI − 0) + f(ξI+1)(xI+1 − xI) + (1)(2− xI+1).

Rewriting (−1)xI as (−1) + (1− xI) and 2− xI+1 as 1− (xI+1 − 1).

|S(f,P)− 0| = |(−1) · xI + f(ξI+1)(xI+1 − xI) + (1) · (2− xI+1)|
= |(−1) + (1− xI) + f(ξI+1)(xI+1 − xI) + (1) · (1− (xI+1 − 1))|
= |(1− xI) + f(ξI+1)(xI+1 − xI) + (1− xI+1)|
≤ |(1− xI)|+ |f(ξI+1)(xI+1 − xI)|+ |(1− xI+1)|
≤ |(xI+1 − xI)|+ |f(ξI+1)(xI+1 − xI)|+ |(xI+1 − xI)|

Since 1 < ξI+1, we have f(ξI+1) = 1. Therefore,

|S(f,P)| = |(xI+1 − xI)|+ |(xI+1 − xI)|+ |(xI+1 − xI)| .

Now, given any real ϵ > 0, choose δ = ϵ
3
. Let P = {[xi−1, xi] | 0 ≤ i ≤ n} be a partition

of [0, 2] such that ∥P∥ < δ. Therefore |xi − xi−1| < δ, for all i.

Thus,
|S(f,P)− 0| = |S(f,P)| ≤ δ + δ + δ < 3δ = ϵ.

Hence, f is Riemann integrable on [0, 2].

(b) Explain why f is Riemann integrable on [0, x], for every x ∈ [0, 2]. [0.5]

Soln.: Recall: If f is integrable on an interval S, then it is integrable on every
subinterval I ⊂ S.

(c) Define F : [0, 2] → R via F (x) =
∫ x

0
f . Show that F is continuous on [0, 2]. [1.5]

Soln.: Let y, z ∈ [0, 2] with y < z. Then,

F (z) =

∫ z

0

f =

∫ y

0

f +

∫ z

y

f = F (y) +

∫ z

y

f.

Therefore, F (z)−F (y) =
∫ z

y
f . We know that −1 ≤ f(x) ≤ 1 for all x ∈ [0, 2]. Therefore,

(−1)(z − y) ≤
∫ z

y

f ≤ (1)(z − y),
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and hence |F (z)− F (y)| = |
∫ z

y
f | ≤ |z − y|.

To check continuity of F at x = a ∈ [0, 2]: Let ϵ > 0. Choose δ = ϵ. Then for
x ∈ (a− δ, a+ δ) ∩ [0, 2],

|F (x)− F (a)| ≤ |x− a| < δ = ϵ.

Therefore, F is continuous at a.

For better understanding of F , show that F (x) = −x for x ∈ [0, 1] and F (x) = x− 2 for
x ∈ [1, 2].

7. (a) Write down the radii of convergence of each of the power series given below. You do not
have to justify your answer for this part.

i.
∑∞

1 (9n2)nxn

ii.
∑∞

1 (8n)nxn

iii.
∑∞

1 7nxn

iv.
∑∞

1
xn

(6n)!
[2]

Soln.:

i.
∑∞

1 (9n2)nxn, r = 0

ii.
∑∞

1 (8n)nxn, r = 0

iii.
∑∞

1 7nxn, r = 1
7

iv.
∑∞

1
xn

(6n)!
, r = ∞.

(b) Consider θ : (0,∞) → (0,∞) given by θ(x) = 1
x2 + 1

x
. Show that θ is bijective and that

θ−1 is continuous. [3]

Soln.: To show that θ is one-to-one, suppose that θ(x1) = θ(x2) for some x1, x2 ∈ (0,∞).
Then

1

x2
1

+
1

x1

=
1

x2
2

+
1

x2

=⇒
(

1

x1

+
1

2

)2

− 1

4
=

(
1

x2

+
1

2

)2

− 1

4

=⇒
(

1

x1

+
1

2

)
=


(

1
x2

+ 1
2

)
OR

−
(

1
x2

+ 1
2

)
As x2 > 0, −

(
1
x2

+ 1
2

)
< 0. Therefore,(

1

x1

+
1

2

)
=

(
1

x2

+
1

2

)
=⇒ x1 = x2.

Therefore θ is injective.

To show that θ is surjective, we need to show that for any y ∈ (0,∞), there exists an
x ∈ (0,∞) such that θ(x) = y. Let y ∈ (0,∞). Then we can solve the equation θ(x) = y
for x to get

x =
1±√

1 + 4y

2y

Since y > 0, 1+
√
1+4y
2y

> 0, so θ is surjective.

Therefore, θ is bijective. And the inverse function is given by

θ−1(y) =
1 +

√
1 + 4y

2y
.
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We will show that θ−1 is continuous using Sequential Criterion:

Let (yn) be a convergent sequence in (0,∞), such that yn → y and y ∈ (0,∞). Consider

the sequence xn = 1+
√
1+4yn
2yn

. Since yn ̸= 0 and y ̸= 0, by applying ratio of limits, we get

limxn = lim
1 +

√
1 + 4yn
2yn

=
lim(1 +

√
1 + 4yn)

lim(2yn)

=
1 +

√
1 + 4y

2y

which lies in (0,∞). Hence the sequence (xn) = (θ−1(yn)) is convergent. As (yn) is
arbritrary, by sequential criterion, θ−1 is continuous.

Soln.: (Alternate-1: Continuity Using Inverse function theorem):

Let 0 < x < y be real numbers. Then

x < y =⇒ 1

y
<

1

x

=⇒ 1

y2
+

1

y
<

1

x2
+

1

x

=⇒ θ(y) < θ(x).

Thus, θ is a strictly decreasing function. Clearly, θ is continuous. Therefore, by Contin-
uous Inverse Function Theorem, θ−1 is monotonic and continuous.

Note: You still need to prove bijectivity, as shown earlier.

Soln.: (Injectivity using derivatives):

It is enough to show that θ is strictly monotonic. To show this, consider θ′(x) = − 2
x3 − 1

x2 .
Note that θ′(x) < 0, for all x ∈ (0,∞). This proves θ is injective.

Note: You still need to prove surjectivity, continuity etc.

—–Paper Ends—–
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