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Instructions: This is a 90 minutes’ test. Show all steps. There are 3 questions each worth 5
marks and one bonus question. Answer all questions in designated space or over the extra pages
towards the end of the booklet. Use supplementary sheets ONLY for rough work. DO NOT
TIE supplementary sheets to this answer booklet.

1. (a) State whether the following statements are true or false.

(i) If a set S ⊂ R has an upper bound, then
S has infinitely many upper bounds.

Soln.: True [0.5]

(ii) For a set S ⊂ R, it is known that for every
s ∈ S, there exists a t ∈ S such that t < s.
Then, S has NO lower bound.

Soln.: False [0.5]

(b) Prove the Generalized Archimedean Property: Let (δn) be a sequence of positive real
numbers such that lim δn = 0. Show that for any given real number r, there exists
an N ∈ N such that 1

δN
> r. [1]

Soln.:

Case (a) If r ≤ 0, take N = 1 and since by hypothesis we have δ1 > 0, 1
δ1

> 0 ≥ r.

Case (b) If r > 0, set ϵ = 1
r in the definition of convergence of the sequence (δn).

This gives a natural number N , such that for all n ≥ N , we have |δn − 0| < 1
r = ϵ.

For n = N , since δN > 0, we get 1
δN

> r.

(c) Let S =
{
− 9

m + 1 + 1
n | m,n ∈ N

}
. Find inf S and supS. Justify your answer. [3]

Soln.:

Part (i) Upper bound: For any natural numbers m,n, it is true that − 9
m + 1 + 1

n ≤
0 + 1 + 1 as n ≥ 1 and m > 0. Thus 2 is an upper bound for S.

Every real number greater than or equal to 2 is an upper bound for S. (No real
number less than 2 is an upper bound: See Part (iv) below)

Part (ii) Lower bound: For any natural numbers m,n, it is true that −9 + 1 + 0 ≤
− 9

m + 1 + 1
n as n > 0 and m ≥ 1. Thus −8 is a lower bound for S.

Every real number less than or equal to −8 is a lower bound for S. (No real number
greater than −8 is a lower bound. See Part (v) below)

Part (iii) Clearly S is nonempty. For instance −9 + 1 + 1 = −7 is a member of S.
And from parts (i), (ii) and (iii) we know that supS and inf S exist.

Part (iv) If ℓ is any real number less than 2, then take ϵ = 2−ℓ > 0. By Archimedean
Property, there exists a natural number M > 9

ϵ . This implies − 9
M > −ϵ, i.e., α :=

− 9
M + 1 + 1

1 > 2− ϵ = ℓ. The element α ∈ S and is greater than ℓ, proving that ℓ is
NOT an upper bound for S. This shows that 2 is the least upper bound, the supS.

Part (v) If g is any real number greater than −8, then take ϵ = g − (−8) > 0. By
Archimedean Property, there exists a natural number N > 1

ϵ . This implies 1
n < ϵ,

i.e., β := −9
1 + 1 + 1

n < −8 + ϵ = g. The element β ∈ S and is less than g, proving
that g is NOT a lower bound for S. This shows that −8 is the greatest lower bound,
the inf S.

Alternate Solution:

Consider the sets A1 = {−9
m | m ∈ N}, A2 = {1}, and A3 = { 1

n | n ∈ N}. Clearly,
S = A1 + A2 + A3 = {x + y + z | x ∈ A1, y ∈ A2, z ∈ A3}. We will find supS and
inf S by computing supAi and inf Ai, for i = 1, 2, 3.

For the set A2, clearly, supA2 = 1 = inf A2.

Note that A1 = {−9
1 , −9

2 , −9
3 , . . .}. Since −9 ≤ −9

m for all m ∈ N, −9 is a lower bound.
Now −9 ∈ A1, there cannot be a lower bound larger than −9. Hence inf A1 = −9.
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We claim that supA1 = 0. Clearly, 0 is an upper bound for A1. Let ϵ > 0. Then
by Archimedean Property, there exists M ∈ N such that 9

ϵ < M , and hence 9
M < ϵ.

Therefore −ϵ < −9
M < 0 and −9

M ∈ A1. (0 is an upper bound and anything less than 0
is not an upper bound.) This proves supA1 = 0.

Now, A3 = {1, 12 ,
1
3 , . . .}. For each x ∈ A3, 0 < x ≤ 1. Thus 1 is a upper bound and 0

is a lower bound for A3. Now 1 ∈ A3, so anything smaller than 1 cannot be an upper
bound. Therefore, supA3 = 1. Claim: inf A3 = 0. Let ϵ > 0. Then by Archimedean
Property, there exists N ∈ N such that 1

ϵ < N , and hence 0 < 1
N < ϵ. Since 1

N ∈ A3,
we see that inf A3 = 0. (0 is a lower bound and anything greater than 0 is not a lower
bound.)

Lemma: Let A,B ⊂ R be nonempty subsets bounded above. Define C = {x +
y | x ∈ A, y ∈ B}. Then C is nonempty subset of R, bounded above and supC =
supA+ supB.

(Note: Proof of this lemma is not expected on the quiz, however you should try
proving it now!)

Using this lemma, we see that supS = supA1 + supA2 + supA3 = 0 + 1 + 1 = 2.
Similarly, inf S = inf A1 + inf A2 + inf A3 = −9 + 0 + 1 = −8.

2. (a) Let (an) be the sequence given by an = 1 + 2 + 3 + · · · + n. Does the series
∑ 1

an
converge or diverge? Justify your answer. [1]

Soln.: For any natural number n, an = 1 + 2 + · · · + n = n(n+1)
2 , hence 1

an
=

2
(

1
n − 1

n+1

)
. Consider the partial sum

sn =
1

a1
+

1

a2
+ · · ·+ 1

an

=

[
2

(
1

1
− 1

2

)
+ 2

(
1

2
− 1

3

)
+ · · ·+ 2

(
1

n
− 1

n+ 1

)]
= 2

(
1− 1

n+ 1

)
.

We have seen in the class that lim 1
n = 0 and the sequence

(
1

n+1

)
, being a subsequence

of the convergent sequence
(
1
n

)
has the same limit. Hence, lim

1

n+ 1
= lim

1

n
= 0.

Using the latter in the sequence of partial sums (sn), we get lim sn = 2. Therefore
the series

∑ 1
an

converges and is equal to 2.

Alternate Solution:

For each n ∈ N, we have

0 <
1

an
≤ 2

n(n+ 1)
≤ 2

n2
.

Since
∑ 2

n2 converges, by comparison test for series,
∑ 1

an
coverges.

Alternate Solution:

Let dn = 1
n2 . Then lim

1
an

dn
= 2 ̸= 0 Alternately, lim

dn
1
an

=
1

2
̸= 0.

Therefore, by limit comparison test, convergence of
∑

dn implies
∑ 1

an
converges.
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(b) Let (bn) be the sequence given by bn = 1 + 1
2 + 1

3 + · · · + 1
n . Does the series

∑ 1
bn

converge or diverge? Justify your answer. [1]

Soln.:

Note that for each n ∈ N, bn ≤ n, and hence 0 < 1
n ≤ 1

bn
.

We know that the harmonic series
∑ 1

n diverges, hence by comparison test for
series,

∑ 1
bn

diverges.

(c) Prove the Sandwich Theorem for series: Suppose the terms of the three series
∑

an,∑
bn and

∑
cn satisfy for every natural number n, an ≤ bn ≤ cn, .

{Warning: Do not assume 0 ≤ an ≤ bn ≤ cn.}
i. If

∑
an =

∑
cn, then using sequences of partial sums, show that

∑
bn coverges.[1]

Soln.:
Let sn = a1 + · · ·+ an, tn = b1 + · · ·+ bn, and un = c1 + . . .+ cn, be the partial
sums of the corresponding series. Since

∑
an and

∑
cn converge, the sequences

(sn) and (un) converge. For every natural number n, we have an ≤ bn ≤ cn, and
therefore, sn ≤ tn ≤ un. As

∑
an =

∑
cn = α (say), the sequences (sn) and (un)

converge to α.
Therefore by sandwich theorem for sequences, the sequence (tn) is conver-
gent and converges to α. Therefore,

∑
bn converges to α.

ii. If
∑

an ̸=
∑

cn, then show that
∑

bn coverges. [2]
Soln.:
Let sn = a1 + · · ·+ an, tn = b1 + · · ·+ bn, and un = c1 + . . .+ cn, be the partial
sums of the corresponding series. Since

∑
an and

∑
cn converge, the sequences

(sn) and (un) are Cauchy.

Now, an ≤ bn ≤ cn for all n ∈ N implies
m∑

i=n+1

ai ≤
m∑

i=n+1

bi ≤
m∑

i=n+1

ci for m > n.

Therefore, sm − sn ≤ tm − tn ≤ um − un. . . . (⋆)
Let ϵ > 0. Then there exist N1, N2 ∈ N such that |sm − sn| < ϵ for all m,n ≥ N1

and |um − un| < ϵ for all m,n ≥ N2.
Let N = max{N1, N2}. For all m > n ≥ N , we have

−ϵ < sm − sn and um − un < ϵ,
Using (⋆), we now have

−ϵ < sm − sn ≤ tm − tn ≤ um − un < ϵ.

Thus, the sequence (tn) is Cauchy and hence convergent. Therefore, the series∑
bn is convergent.

3. (a) Let f : R → R be a function and let c ∈ R. For every n ∈ N, suppose there is a real
number δ > 0 such that for all x ∈ R satisfying |x−c| < δ, we have |f(x)−f(c)| < 1

n .
Then show that f is continuous at c. [1]

Soln.:

Let ϵ > 0. Then by Archimedean Property, there exists N ∈ N such that 1
ϵ < N , i.e.

1
N < ϵ.

Now there exists δ > 0 such that for |x− c| < δ, we have |f(x)− f(c)| < 1
N < ϵ.

Thus, f is continuous at c.

(b) For each natural number n, let an =
1

n+ 1
+

1

n+ 2
+ · · · + 1

2n
. Does the sequence

(an) converge or diverge? Justify your answer. [2]

Soln.:
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For n ∈ N, consider

an+1 − an =

(
1

n+ 2
+ · · ·+ 1

2n
+

1

2n+ 1
+

1

2(n+ 1)

)
−
(

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
=

1

2n+ 1
+

1

2n+ 2
− 1

n+ 1

=
1

(2n+ 1)(2n+ 2)
> 0.

Thus the sequence (an) is a monotonically increasing.

Further, for each natual number k, we have 1
n+k < 1

n . Therefore,

an =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

<
1

n
+ · · ·+ 1

n
n times

=
n

n
= 1

Thus (an) is bounded above.

Therefore, by Monotone Convergence Theorem, it is convergent.

(c) Let f : R \ {0} → R be given by f(x) =
1

x2
+

1

x
. Find a real number δ such that for

every x satisfying |x− 1.5| < δ, we should have |f(x)− f(1.5)| < 0.5. [2]

Soln.: Attempt 1: Take δ = 2. Then a = 3 satisfies |a− 1.5| < 2. But

|f(a)− f(1.5)| =
∣∣∣∣ 132 +

1

3
− 10

9

∣∣∣∣
=

∣∣∣∣−2

3

∣∣∣∣ = 2

3
> 0.5.

Thus, δ = 2 does not work.

Attempt 2: Check if δ = 1 and δ = 0.5 work!

A short proof:

We have to find a δ > 0 such that for all x ̸= 0 satisfying , 1.5− δ < x < 1.5 + δ, we
should have f(1.5)− 0.5 < f(x) < f(1.5) + 0.5. Now f(1.5) = 10

9 .

So, for all x ̸= 0 satisfying, 1.5− δ < x < 1.5 + δ, we should have 10
9 − 0.5 < f(x) <

10
9 + 0.5.

That means we should have 11
18 < f(x) < 29

18 .

Take δ = 1
4 . (I found this by trial and error)

Then for x satisfying, 5
4 = 1.5− 1

4 < x < 1.5 + 1
4 = 7

4 , we have

4

7
<

1

x
<

4

5
(1)

16

49
<

1

x2
<

4

5
(2)

(1) and (2) implies, 11
18 < 44

49 < f(x) = 1
x2 + 1

x < 36
25 < 29

18 .

So this δ = 1
4 will do the job.

Detailed Solution:

Let c = 1.5 = 3
2 . Then f(c) =

(
1

( 3
2)

)2

+ 1

( 3
2)

= 10
9 .
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Now f(x) =
(

1
x2 + 1

x

)
=

(
1
x + 1

2

)2 − 1
4

|f(x)− f(1.5)| < 0.5

⇔ − 0.5 < f(x)− f(1.5) < 0.5

⇔ f(1.5)− 0.5 < f(x) < f(1.5) + 0.5

⇔ 10

9
− 1

2
<

1

x2
+

1

x
<

10

9
+

1

2

⇔ 11

18
<

(
1

x
+

1

2

)2

− 1

4
<

29

18

⇔ 11

18
+

1

4
<

(
1

x
+

1

2

)2

<
29

18
+

1

4

⇔ 31

36
<

(
1

x
+

1

2

)2

<
67

36

⇔
√

31

36
<

(
1

x
+

1

2

)
and

(
1

x
+

1

2

)
<

√
67

36

⇔
√

31

36
− 1

2
<

1

x
and

1

x
<

√
67

36
− 1

2

⇔
√
31− 3

6
<

1

x
and

1

x
<

√
67− 3

6

⇔ x <
6√

31− 3
and

6√
67− 3

< x

⇔ x ∈
(

6√
67− 3

,
6√

31− 3

)

Note that all the statements above are equivalent and hence if x ∈
(

6√
67−3

, 6√
31−3

)
,

|f(x)− f(1.5)| < 0.5. Thus if we take δ as

δ = min

{
3

2
− 6√

67− 3
,

6√
31− 3

− 3

2

}
=

3

2
− 6√

67− 3

Thus any x satisfying |x− 1.5| < δ will satisfy |f(x)− f(1.5)| < 0.5.

Are there any other correct answers to δ?

Take δ1 = 0.1, δ2 = 0.23, δ3 = 0.34289. If |x−1.5| < δ1 or |x−1.5| < δ2 or |x−1.5| < δ3,
then |x− 1.5| < δ and hence |f(x)− f(1.5)| < 0.5.

From the calculations above, if your δ > 3
2 − 6√

67−3
, your answer is incorrect. Hence

every correct answer to δ is a positive real number less than 3
2 − 6√

67−3
.


