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1. Intermediate Value Property for a subset of R. An interval is a non–empty subset of R satisfying the INTERme-
diate VALue Property. Examples for intervals.

2. Exhibition theorem for intervals: Every interval is of exactly one of the following forms: (1) {a} = [a, a] (2) [a, b]
(3) (a, b] (4) [a, b) (5) (a, b) (6) (−∞, b] (7) [a,∞) (8) (−∞, b) (9) (a,∞) (10) (−∞,∞) = R, for some reals a < b.
Proof: Use sup/inf.

3. IVP and Continuity: Recall that a subset A ⊂ R is a domain if for every a ∈ A, there exists an interval I ̸= [a, a]
of R such that a ∈ I ⊂ A. We expand our study of continuous functions to those defined on domains.

(a) A continuous function preserves IVP: Let f : A → B be a continuous function for some subsets A,B ⊂ R. If
A has IVP, then f(A) has IVP. Note that this does not imply B has IVP.

(b) A continuous function takes an interval to an interval.

(c) (Weak Preservation of Intervals Theorem) If f : I → R is a continuous function defined on an interval I,
then Range(f)=f(I) is an interval.

(d) (Strong Preservation of Intervals Theorem) If f : A → R is a continuous function on a domain A, then for
any interval I ⊂ A, f(I) is an interval.

(e) (Bolzano’s Intermediate Value Theorem) Let f : A → R be a continuous function on a domain A such that
the interval [a, b] ⊂ A. Case (I) For any real v satisfying f(a) < v < f(b) there exists a real i ∈ [a, b] such
that f(i) = v. Case (II) Analogous.

(f) (Trap Root Theorem) Let f : A → R be a continuous function on a domain A such that the interval [a, b] ⊂ A.
If f(a)f(b) < 0, there exists a z ∈ (a, b) such that f(z) = 0.

4. Can you prove the equivalence of the latter four statements?

5. Trap Root Algorithm: For a function satisfying the above hypotheses, find a zero with an error of less than a real
ϵ > 0. The procedure is

INITIALIZE left1=a, right1=b, mid1=
1
2(left1+right1), error1=

1
2(right1−left1).

DO

IF f(midn)=0, THEN a root has been located.

SET leftn+1 =
1
2(leftn+midn), rightn+1 =

1
2(midn+rightn)

SET midn+1 =midn, errorn+1=
1
2(rightn+1−leftn+1)

(On a machine, exit LOOP.)

IF (f(midn)>0), THEN
IF f(leftn > 0), THEN SET leftn+1=midn, rightn+1=rightn.

IF f(leftn < 0), THEN SET leftn+1=leftn, rightn+1=midn.

SET midn+1=
1
2(leftn+1+rightn+1), errorn+1=

1
2(rightn+1−leftn+1)

IF (f(midn)<0), THEN

IF f(leftn > 0), THEN SET leftn+1=leftn, rightn+1=midn.

IF f(leftn < 0), THEN SET leftn+1=midn, rightn+1=rightn.

SET midn+1=
1
2(leftn+1+rightn+1), errorn+1=

1
2(rightn+1−leftn+1)

WHILE errorn+1 ≥ ϵ.

When the procedure exits on iteration N , take midN+1 as an approximation for the root. Either f(midN+1)=0 in
which case we have the root. Or |midN+1 − z| <errorN+1 < ϵ, in which case we have the root to desired accuracy.
(Note the N + 1, not N)

6. Proof of Trap Root Theorem: Use the procedure to define sequences leftn, midn, rightn and errorn inductively.
Verify that leftn and rightn are monotonic and bounded and hence convergent to say L and R. Since

|rightn−leftn| = 2·errorn = 2(b−a)
2n , by squeeze theorem L = R = z, say. Further, since leftn < midn < rightn, by

squeeze theorem again midn → z. We claim that f(z) = 0. For a proof, note that in the special case if f(midk)=0
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for some natural k, then, by definition, midn=midk for all n ≥ k. Hence midn is an eventually constant sequence
converging to z with f(z) = 0. If f(midn)̸= 0, for every natural n, then f(leftn)f(rightn) < 0 for every n and
continuity implies f(z)f(z) ≤ 0 and being real f(z) = 0.

7. Now, write a program in a suitable language, compile and run for a few functions.
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1. For real numbers a < b, the intervals of the form [a, b] are called compact intervals.

2. Especial Property of compact intervals: If αn is a sequence in any compact interval [a, b], then there exists a
subsequence αnk

→ α ∈ [a, b]. Proof: Bolzano–Weierstrass and Squeeze.

3. Boundedness Theorem: A continuous function on a compact interval is bounded. If f : [a, b] → R is unbounded,
then there exists a sequence αn ∈ [a, b] such that |f(αn)| is an unbounded monotonic sequence. By Especial
Property, a subsequence αnk

→ α ∈ [a, b] which implies that |f(αnk
)| converges to f(α) by continuity. This

contradicts unboundedness of |f(αnk
)|.

4. Lemma: If S ⊂ R is bounded, there exists sequences (yn) and (zn) s.t. yn, zn ∈ S for every natural n and
yn → supS and zn → inf S.

5. Min–Max Theorem/Attainment Theorem: A continuous function f : [a, b] → R on a compact interval [a, b] for
real a ≤ b attains its supremum and infimum.
By the lemma, there is a sequence (αn) such that αn ∈ [a, b] and f(αn) → sup f . By the Especial Property, there
exists a subsequence αnk

→ α ∈ [a, b]. Being a subsequence, f(αnk
) → sup f and by continuity, f(αnk

) → f(α) =
sup f . Done. Likewise with inf.

6. Compactness Theorem: if the domain of a continuous function is a compact interval, then its range is a compact
interval. Proof: Now, the range is a subset of [inf f, sup f ], by definition of inf/sup. By Attainment Theorem, the
end points are in the range. But since the range is an interval, the range is exactly [inf f, sup f ].

7. Converse/contrapositive of above property/theorems?

8. Remark: Especial Property fails for every other type of interval. These three theorems fail for continuous functions
on other types of intervals and also for discontinuous functions on compact intervals. Provide explicit examples.

The tutorial problem 7 of Tutorial Sheet #4 is useful in understanding the above statement.

9. Fake proof of boundedness theorem: Start with continuity at x = a and get δ1 > 0 such that |f(x) − f(a)| < 1
for all |x− a| < δ1. Next continuity at x = a+ 0.99δ1 yields a δ2 > 0 such that |f(x)− f(a+ 0.99δ1)| < 1 for all
|x− (a+ 0.99δ1| < δ2. These two together give |f(x)− f(a)| < 2 for all |x− a| < 0.99δ1 + 0.99δ2. Continue this
argument and reach b. Done. Where is the flaw?

10. Fake proof leads to the definition of uniform continuity as a convenient hypothesis to obtain boundedness. A
function f : A → R on a domain A is uniformly continuous if for every real ϵ > 0 there exists a δ > 0 such that
for any x, y ∈ A satisfying |x− y| < δ, it should be true that |f(x)− f(y)| < ϵ. A uniformly continuous function is
continuous. Prove that a uniformly continuous function on a bounded interval is bounded. Further a continuous
function on a compact interval is uniformly continuous.
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1. Let I and J be intervals. For functions f : I → J for A ⊂ R definitions of increasing, decreasing, monotonic,
strictly increasing, strictly decreasing, strictly monotonic.

2. Examples for: monotonic ̸⇒ injective, strictly monotonic ̸⇒ surjective (continuous), continuous ̸⇒ monotonic
(injective, surjective), injective ̸⇒ monotonic (continuous), surjective ̸⇒ monotonic (continuous).

3. Failure to provide examples contradicting: strictly monotonic ⇒ injective, continuous and injective ⇒ strictly
monotonic, monotonic and surjective ⇒ continuous, monotonic and bijective ⇒ inverse is strictly monotonic.

4. If you are giddy, here is the general principle: Suppose A1, A2, A3, . . . An are adjectives which can be applied to a
collection of nouns (objects) in N . It is only natural to ask the questions:

(a) First Order: For any x ∈ N , if x is A1
?⇒ x is A2 and similar n(n− 1) questions.

(b) Second Order: For any x ∈ N , if x is A1 and x is A2
?⇒ x is A3 and similar 1

2(n)(n− 1)(n− 2) questions.

(c) Third Order: Formulate and count.

(d) Fourth–(n− 1)th Order: Formulate and count.

Show that the total number of such questions is n(2n−1 − 1).

5. In our example, our nouns are ‘functions from intervals to intervals’. Our six adjectives are ‘monotonic’, ‘strictly
monotonic’, ‘injective’,‘surjective’,‘bijective’, ‘continuous’. How many questions of 1–5 orders can I ask you? How
many can you answer?

6. Injective & continuous implies strictly monotonic.
Let f : I → J be continuous and injective from an interval I to an interval J . Then f is strictly monotonic.
Proof: Assume f is not strictly monotonic. Then f is not strictly increasing or strictly decreasing (and hence there
exists ξ1 < ξ2 and ξ3 < ξ4 such that f(ξ1) ≤ f(ξ2) and f(ξ3) ≥ f(ξ4)). This implies (fill the gap!) we can find
three points in the domain x1 < x2 < x3 such that either (i) f(x1) ≤ f(x2) ≥ f(x3) or (ii) f(x1) ≥ f(x2) ≤ f(x3).
Injectivity of f allows us to infer that either (i) f(x1) < f(x2) > f(x3) or (ii) f(x1) > f(x2) < f(x3) is true. Case
(i) has three sub-cases: (i.a) f(x1) < f(x3), (i.b) f(x1) = f(x3) and (i.c) f(x1) > f(x3). Sub-case (i.b) violates
injectivity. For other two sub-cases, apply intermediate value property to get contradictions to injectivity. Case
(ii) is similar.

7. Invertible & monotonic implies monotonically invertible.
f : A → B be an increasing bijective function from a set A to a set B. Then the inverse of f is strictly increasing.
Like wise for a decreasing bijective function.
Proof: Let g : B → A be the uniquely defined inverse of f . Suppose b1 < b2 are any two elements in B. Since
g is injective, g(b1) = g(b2) is not allowed. Suppose g(b1) > g(b2). f being increasing and injective, we get
f(g(b1)) > f(g(b2)), i.e., b1 > b2, a contradiction. Conclude that g(b1) < g(b2).

8. Lemma on monotonic and discontinuous

Let f : (a, b) → B be monotonically increasing. For each c ∈ (a, b), define

Lc := {f(x)|x < c}, lc := supLc and Rc := {f(x)|x > c}, rc := inf Rc.

Then, f is continuous at c ∈ (a, b) if and only if lc = f(c) = rc.

Remark: Existence of lc and rc are guaranteed by the observations that Lc is non–empty and bounded above by
f( c+b

2 ) while Rc is non–empty and bounded below by f(a+c
2 ). Indeed, f(c) is an upper bound for Lc and f(c) is

a lower bound for Rc which implies lc ≤ f(c) ≤ rc.

(continuity at c implies equality) Proof: If lc ≤ f(c) < rc, find a sequence (xn) such that xn > c, xn → c, and
f(xn) → rc ̸= f(c), contradicting continuity of f at c. Similarly, if lc < f(c) ≤ rc, find a sequence (xn) such that
xn < c, xn → c, and f(xn) → lc ̸= f(c), contradicting continuity of f at c. From the previous two contradictions,
conclude lc = f(c) = rc.

(equality of lc and rc implies continuity) Given lc = f(c) = rc and an ϵ > 0. Since f(c) is the supremum of Lc,
f(c) − ϵ < f(c) is not an upper bound. Therefore there exists an x1 < c such that f(x1) > f(c) − ϵ. Likewise,
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there exists an x2 > c such that f(x2) < f(c) + ϵ. By monotonicity, for all x satisfying x1 ≤ x ≤ x2, we have
f(c)− ϵ < f(x1) ≤ f(x) ≤ f(x2) < f(c) + ϵ. Thus δ = min(c− x1, x2 − c) works to prove continuity at c for given
ϵ.

Question: How would you handle domain of f of the type (a, b], [a, b) or [a, b]?

9. Monotonic & surjective implies continuous.
Let f : A → B be a monotonic and surjective function from a domain A to an interval B. Then f is continuous.
Proof: Assume f is discontinuous at c ∈ A, is increasing and apply previous Lemma. Either lc < f(c) or f(c) < rc.
In the former case, using monotonicity of f check that (lc, f(c)) is not in the range of f , B. Now, notice that for
a < c, f(a) < lc is in B, f(c) is in B – contradicts the fact that B is an interval, satisfying intermediate value
property. The other case of f(c) < rc is similar, with (f(c), rc) not in the range of f .

The case of f being a decreasing function is analogous. And handling discontinuities at end points of A, requires
care.

10. Invertible & continuous implies continuously invertible.

Inverse Function Theorem (in the world of continuous functions): Let I and J be intervals and f : I → J a
bijective continuous function. Then its inverse g : J → I is continuous.
Proof: Relying on the previous three results, f is injective and continuous implies f is strictly monotonic, f is
monotonic and bijective implies g is monotonic, g is monotonic and surjective implies g is continuous. Done.

11. Application: Existence and continuity of n–th root functions.


