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1. Lengths: Definition of a unit length as a standard. Lengths of straight line segments which are natural numbers,
fractions and real numbers.

2. Areas: Definition of a unit square as standard.

3. Area of a rectangle whose sides are of lengths which are natural numbers/non–negative integers. Extension to
rectangles having sides of lengths which are non–negative fractions. How about if sides are non–negative reals?

4. Area of a parallelogram. Area of a triangle. Area of a polygon.

5. Remark that with the definitions we have, the most general curves for which we can ask about their lengths are
actually only straight line segments. Similarly the most general regions for which we can ask about its area are
polygons. Of course, minor variants like lengths of piece–wise straight line segments and a collection of polygons
any two of which intersect either in an empty set or in a point are allowed. It is inappropriate to ask about
circumference of a circle or an ellipse or area of a circular or an elliptical region, for instance.

6. Despite the remark, ancients considered the problem of lengths of more general curves and areas of more general
planar regions. For calculating lengths of “curved” curves, their method was to approximate the curve by a
piece–wise straight line segment and take “finer and finer” approximations. The method for calculating areas of
regions with “curved” boundaries is to approximate the region by a collection of triangles or rectangles and take
“finer and finer” approximations.

7. What is the circumference of a circle of radius R? What is its area?

8. Proposition: There exists a universal constant denoted by π such that for any circle circumference
diameter = area

(radius)2
= π.

Proof: (Using Trigonometry) Let C and A denote the circumference and area of a circle of radius R. Let
pn, Pn, an, An denote respectively the perimeters and areas of regular n-gons (n ≥ 3) circumscribed by and cir-
cumscribing the given circle. We then have

pn < C < Pn & an < A < An for every natural n ≥ 3.

Using trigonometry, one verifies
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Can you prove that there is a real number α such that lim
θ◦→0

sin(θ◦)
θ◦ = lim

θ◦→0

tan(θ◦)
θ◦ = α? . . .(*). Define π to be that

real number which is 180α. Then, one has lim pn = limPn = C = 2πR and lim an = limAn = A = πR2. This
completes the proof.
Note that your proof of (*) should not use lim sin ξ

ξ = 1, when ξ is measured in radians. This is owing to the fact
that radian measure presupposes establishment of π and length of circular arc.

9. Can one find the circumference and area of a circle without using trigonometry?

10. Lemma: If sn and Sn are the lengths of sides of regular n–gons circumscribed by and circumscribing a circle of
radius R, then
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Proof: Elementary Euclidean Geometry.

11. Antiphon found lim p2k , Bryson found limP2k and Archimedes found limA2k using the above lemma as follows.
One can verify that s4 =

√
2R and S4 = 2R. Using the lemma, the sequences (s2k) and (S2k) are well defined. As

an exercise prove that (2ks2k), (2
kS2k) and (2k 1

2RS2k) converge to 2πR, 2πR and πR2 for some real number π.

12. Corollary: Define α2 =
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for each k ≥ 2.

Similarly, β2 = 2 and βk+1 =
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for each k ≥ 2.

2k−1αk and 2k−1βk are monotonic sequences converging to π.
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1. Ancient Problem of Areas: Given a region in a plane, find its area. In this form, the problem is ill–posed. Despite
this, like the example of circle, mathematicians of antiquity found area of elliptical regions, area of parabolic
regions etc.

2. Issues with their methods: What is a definition for area of a region? If a sequence of polygons approximate a
region, over what kinds of such polygonal approximations should one take the limit to get the area of the region?
Does every such limit yield the same answer?

3. The biggest challenge was to get the exact answer. Exact answers could be found in very few examples. There
was nothing anyone could do for almost two thousand years.

4. We shall consider the problem of area under a function f : [a, b] → R. By this we mean the area of the region
whose boundary is determined by the curves x = a, x = b and y = f(x). Question: Is this restricted problem
sufficient to solve the Ancient Problem of Areas?

5. Given an interval [a, b], define a partition for that interval, subinterval, norm of a partition, tag for a subinterval
and tagged partition.

6. The Riemann sum of a function defined on a compact interval w.r.t. a tagged partition is an approximation to
the yet-to-be-defined area under that function. One should find limits of Riemann sums over a sequence of tagged
partitions whose norm goes to zero. If all such limits yield the same answer, we say that area under the function
exists/well–defined and take that common answer to be the value of the area.

7. We say that f : [a, b] → R is Riemann integrable or simply integrable if any of the following equivalent conditions
hold:
Sequential Criterion There exists a real number L such that if Ṗn is a sequence of tagged partitions of [a, b] such

that ||Ṗn|| → 0, then limS(f, Ṗn) = L.
Riemann’s Criterion There exists a real number L such that for any real ϵ > 0, there exists a real δ > 0 such that
for any tagged partition Ṗ of [a, b] with ||Ṗ|| < δ, we have |S(f, Ṗ)− L| < ϵ.
Cauchy’s Criterion For every real ϵ > 0, there exists a real η > 0 such that if Ṗ and Q̇ are tagged partitions of

[a, b] with ||Ṗ||, ||Q̇|| < η, we should have |S(f, Ṗ)− S(f, Q̇)| < ϵ.

8. If any of the above criteria hold, we say that f is integrable (over [a, b]) and its (Riemann) integral is L. We write∫ b
a f(x)dx = L. This notation is unfortunate as it anticipates fundamental theorem of calculus.

9. Uniqueness of limit.

10. Proof: RC implies SC, CC are easy. For SC implies RC, do rather OPP(RC) implies OPP(SC). For CC implies
RC, see BaSh.

11. Examples of integrability of constant, identity and square functions on compact intervals.

12. Rules: Sum, Difference and Constant Multiple Rules of Riemann Integrability. Dominance/Comparison Rule. All
proofs are easy with Sequential Criterion.

13. Integrability of restrictions, Summation over restrictions.

14. Theorems: integrable implies bounded, continuous implies integrable and monotonic implies integrable. How
about their converses?

15. Definition of integral for a = b and b < a. Interpretation for negative areas.


