1. If we want to apply Cauchy's definition of convergence, we need to know the limiting point in advance. However, in many cases we may guess a sequence to be convergent without knowing the limiting point. \{Example: A sequence $\left(x_{n}\right)$ defined by $x_{1}=1 ; \quad x_{2}=2 ; \quad x_{n+1}=\frac{1}{2}\left(x_{n}+x_{n-1}\right)$: See text for full discussion $\}$ To handle such cases, is it possible to give a criterion which, if true, would enable us to conclude convergence of the sequence? Note that this criterion should be in terms of the given sequence only.
2. Such a criterion was given by Cauchy. It is based on differences between terms of the sequence.
3. Before we see that condition, let us prove: If a sequence $b_{n} \rightarrow b$ then, the sequences $b_{n+1}-b_{n}, b_{n+2}-b_{n}, b_{n+3}-$ $b_{n}, \ldots \rightarrow 0$. Thus, if $b_{n} \rightarrow b$, then given any natural p the sequence $b_{n+p}-b_{n} \rightarrow 0$. Thus if a sequence is convergent, its p-th difference sequence should converge to 0 for every natural p. Let us call this poochy for short. Thus being poochy is necessary for being convergent.
4. Warning: poochy is a non-standard term. Please do not use it after the end of this semester!
5. Does poochy imply convergent? The example of $\sum \frac{1}{n}$ illustrates that this is not true. We need something stronger than poochy.
6. Cauchy found such a condition by making the difference sequences converge to zero uniformly in p. See tutorial sheet \#2 for more inspiration.
7. A sequence $\left(c_{k}\right)$ is cauchy if for every (real) $\epsilon>0$, there exists a natural number N such that for all $m, n \geq N$, $\left|c_{n}-c_{m}\right|<\epsilon$.
8. Proposition: Convergent implies cauchy.

Proof: Let c be the limit of a cauchy sequence $\left(c_{k}\right)$. Given any real $\epsilon>0$, there exists a natural number K such that for all $k \geq K,\left|c_{k}-c\right|<\frac{\epsilon}{2}$. Now, using triangle inequality: For all $m, n \geq K$, we have $\left|c_{m}-c_{n}\right|=$ $\left|c_{m}-c-\left(c_{n}-c\right)\right| \leq\left|c_{m}-c\right|+\left|\left(c_{n}-c\right)\right|<\epsilon$.
9. Proposition: Cauchy implies bounded.

Proof: Taking $\epsilon=1$, there exists a natural number K such that for all $m, n \geq K,\left|c_{m}-c_{n}\right|<1$.
Thus for all $n \geq K,-1+c_{K}<c_{n}<1+c_{K}$. Set $L=\min \left(c_{1}, c_{2}, \ldots, c_{K-1},-1+c_{K}\right)$ and $U=\max \left(c_{1}, c_{2}, \ldots, c_{K-1}, 1+\right.$ c_{K}) and all terms of the sequence are between L and U.
10. Proposition: Cauchy implies convergent.

Proof: Given a cauchy sequence $\left(c_{n}\right)$, define the sequence of infimums $\alpha_{n}:=\inf \left\{c_{k} \mid k \geq n\right\}$ Prove the following inequalities

$$
\alpha_{1} \leq \alpha_{2} \leq \alpha_{3} \leq \cdots \leq \alpha_{n} \leq \cdots .
$$

By the Monotone Convergence Theorem, $\alpha_{n} \rightarrow \alpha^{*}$ for some real α^{*}.
Given a positive real ϵ, by definition of cauchy sequence, there exists a natural L such that for all natural $m, n \geq L$, we have $\left|c_{m}-c_{n}\right|<\frac{1}{3} \cdot \epsilon$.
Since $\alpha_{n} \rightarrow \alpha^{*}$, there exists a natural M^{\prime} such that $\alpha^{*}-\frac{1}{3} \cdot \epsilon<\alpha_{M^{\prime}} \leq \alpha^{*}$. However, the sequence of infimums is increasing and we can find a natural $M \geq \max \left(M^{\prime}, L\right)$ such that $\alpha^{*}-\frac{1}{3} \cdot \epsilon<\alpha_{M} \leq \alpha^{*}$, i.e., $\left|\alpha_{M}-\alpha^{*}\right|<\frac{1}{3} \cdot \epsilon \ldots$. (2) Since $\alpha_{M}+\frac{1}{3} \cdot \epsilon>\alpha_{M}$, it is not the infimum of the set $\left\{c_{k} \mid k \geq M\right\}$. Hence, there exists a natural $N \geq M$ such that $\alpha_{M} \leq c_{N}<\alpha_{M}+\frac{1}{3} \cdot \epsilon$, i.e., $\left|c_{N}-\alpha_{M}\right|<\frac{1}{3} \cdot \epsilon$.
Now, combine (1), (2) and (3) in the following.
Given any natural $m \geq N,\left|c_{m}-\alpha^{*}\right| \leq\left|c_{m}-c_{N}\right|+\left|c_{N}-\alpha_{M}\right|+\left|\alpha_{M}-\alpha^{*}\right|<\epsilon$.
11. For extra-credit:

Define the sequence of supremums $\left(\beta_{n}\right)$ by $\beta_{n}:=\sup \left\{c_{k} \mid k \geq n\right\}$. Prove the following inequalities

$$
\alpha_{1} \leq \alpha_{2} \leq \alpha_{3} \leq \cdots \leq \alpha_{n} \leq \cdots \leq \beta_{n} \leq \cdots \leq \beta_{3} \leq \beta_{2} \leq \beta_{1}
$$

By the Monotone Convergence Theorem, $\beta_{n} \rightarrow \beta^{*}$ for some real β^{*}. One can prove that $\alpha^{*}=\beta^{*}$.
12. Remark: The α^{*}, β^{*} in the above proof are respectively termed the liminf and the limsup of the given sequence. You can try to prove that a given sequence $\left(c_{n}\right)$ is convergent if and only if these two $\lim \inf c_{n}$ and the $\limsup c_{n}$ exist and are equal. This may be viewed as an alternative to cauchy's formulation of convergence criterion.

