- 1. If we want to apply Cauchy's definition of convergence, we need to know the limiting point in advance. However, in many cases we may guess a sequence to be convergent without knowing the limiting point. {Example: A sequence (x_n) defined by $x_1 = 1$; $x_2 = 2$; $x_{n+1} = \frac{1}{2}(x_n + x_{n-1})$: See text for full discussion} To handle such cases, is it possible to give a criterion which, if true, would enable us to conclude convergence of the sequence? Note that this criterion should be in terms of the given sequence only.
- 2. Such a criterion was given by Cauchy. It is based on differences between terms of the sequence.
- 3. Before we see that condition, let us prove: If a sequence $b_n \to b$ then, the sequences $b_{n+1} b_n$, $b_{n+2} b_n$, $b_{n+3} b_n$, $\dots \to 0$. Thus, if $b_n \to b$, then given any natural p the sequence $b_{n+p} b_n \to 0$. Thus if a sequence is convergent, its p-th difference sequence should converge to 0 for every natural p. Let us call this *poochy* for short. Thus being poochy is necessary for being convergent.
- 4. Warning: *poochy* is a non-standard term. Please do not use it after the end of this semester!
- 5. Does poochy imply convergent? The example of $\sum \frac{1}{n}$ illustrates that this is not true. We need something stronger than poochy.
- 6. Cauchy found such a condition by making the difference sequences converge to zero uniformly in p. See tutorial sheet #2 for more inspiration.
- 7. A sequence (c_k) is cauchy if for every (real) $\epsilon > 0$, there exists a natural number N such that for all $m, n \ge N$, $|c_n - c_m| < \epsilon$.
- 8. Proposition: Convergent implies cauchy.

Proof: Let c be the limit of a cauchy sequence (c_k) . Given any real $\epsilon > 0$, there exists a natural number K such that for all $k \ge K$, $|c_k - c| < \frac{\epsilon}{2}$. Now, using triangle inequality: For all $m, n \ge K$, we have $|c_m - c_n| = |c_m - c - (c_n - c)| \le |c_m - c| + |(c_n - c)| < \epsilon$.

9. Proposition: Cauchy implies bounded.

Proof: Taking $\epsilon = 1$, there exists a natural number K such that for all $m, n \ge K$, $|c_m - c_n| < 1$.

Thus for all $n \ge K$, $-1+c_K < c_n < 1+c_K$. Set $L = \min(c_1, c_2, \dots, c_{K-1}, -1+c_K)$ and $U = \max(c_1, c_2, \dots, c_{K-1}, 1+c_K)$ and all terms of the sequence are between L and U.

10. Proposition: Cauchy implies convergent.

Proof: Given a cauchy sequence (c_n) , define the sequence of infimums $\alpha_n := \inf\{c_k | k \ge n\}$ Prove the following inequalities

 $\alpha_1 \le \alpha_2 \le \alpha_3 \le \dots \le \alpha_n \le \dots.$

By the Monotone Convergence Theorem, $\alpha_n \to \alpha^*$ for some real α^* .

Given a positive real ϵ , by definition of cauchy sequence, there exists a natural L such that for all natural $m, n \ge L$, we have $|c_m - c_n| < \frac{1}{3} \cdot \epsilon$. (1)

Since $\alpha_n \to \alpha^*$, there exists a natural M' such that $\alpha^* - \frac{1}{3} \cdot \epsilon < \alpha_{M'} \le \alpha^*$. However, the sequence of infimums is increasing and we can find a natural $M \ge \max(M', L)$ such that $\alpha^* - \frac{1}{3} \cdot \epsilon < \alpha_M \le \alpha^*$, i.e., $|\alpha_M - \alpha^*| < \frac{1}{3} \cdot \epsilon \dots (2)$ Since $\alpha_M + \frac{1}{3} \cdot \epsilon > \alpha_M$, it is not the infimum of the set $\{c_k | k \ge M\}$. Hence, there exists a natural $N \ge M$ such that $\alpha_M \le c_N < \alpha_M + \frac{1}{3} \cdot \epsilon$, i.e., $|c_N - \alpha_M| < \frac{1}{3} \cdot \epsilon$(3) Now, combine (1), (2) and (3) in the following.

Given any natural $m \ge N$, $|c_m - \alpha^*| \le |c_m - c_N| + |c_N - \alpha_M| + |\alpha_M - \alpha^*| < \epsilon$.

11. For extra-credit:

Define the sequence of supremums (β_n) by $\beta_n := \sup\{c_k | k \ge n\}$. Prove the following inequalities $\alpha_1 \le \alpha_2 \le \alpha_3 \le \cdots \le \alpha_n \le \cdots \le \beta_n \le \cdots \le \beta_3 \le \beta_2 \le \beta_1$. By the Monetone Convergence Theorem $\beta_n \to \beta^*$ for some real β^* . One can prove that $\alpha^* = \beta^*$.

By the Monotone Convergence Theorem, $\beta_n \to \beta^*$ for some real β^* . One can prove that $\alpha^* = \beta^*$.

12. Remark: The α^*, β^* in the above proof are respectively termed the lim inf and the lim sup of the given sequence. You can try to prove that a given sequence (c_n) is convergent if and only if these two lim inf c_n and the lim sup c_n exist and are equal. This may be viewed as an alternative to cauchy's formulation of convergence criterion.