1. An IITian is smart if there exists some day N of his (indefinite) stay in IIT such that for any day $n \geq N$, the IITian solves tutorial sheet problems on day n. Who is a non-smart IITian?
2. An IITian is super smart if there exists some day N of her stay in IIT such that for any day $n \geq N$, if n is a working day, the IITian solves tutorial sheet problems on day n. Who is a non-super smart IITian?
3. Examples of graphs of functions with and without breaks at a certain point of their domain.
4. (SC) Sequential criterion: for every sequence $x_{n} \rightarrow c$, assuming $x_{n} \in \operatorname{domain}(f)$, it should be true that $f\left(x_{n}\right) \rightarrow$ $f(c)$.
OPP.(SC): there exists a sequence $x_{n} \rightarrow c$ such that $x_{n} \in$ domain (f) but $f\left(x_{n}\right) \nrightarrow f(c)$.
5. (WC) Weierstrass criterion: for any real $\epsilon>0$, there exists a real $\delta>0$ such that for every x satisfying $|x-c|<\delta$, if $x \in \operatorname{domain}(f)$, it should be true that $|f(x)-f(c)|<\epsilon$.
OPP. (WC): there exists a real $\epsilon_{0}>0$ such that for any real $\delta>0$, there exists an $x_{\delta} \in$ domain (f) which satisfies $\left|x_{\delta}-c\right|<\delta$ but it is true that $\left|f\left(x_{\delta}\right)-f(c)\right| \geq \epsilon_{0}$.
6. Proof of OPP.(WC) implies OPP.(SC). This proves (SC) implies (WC).
7. Proof of (WC) implies (SC).
8. Domain: A subset $A \subset \mathbb{R}$ is a domain if for every $c \in A$, at least one one of the following three types of sets $\left[c, c+\alpha_{0}\right),\left(c-\alpha_{0}, c+\alpha_{0}\right)$ or $\left(c-\alpha_{0}, c\right] \subset A$ for some real $\alpha_{0}>0$.
9. Suppose $f: A \rightarrow \mathbb{R}$ is a function on a domain A. Say f is continuous at c by (SC) \equiv (WC). Say f is continuous if it is continuous at every point of its domain.
10. In domain (f), 'domain' associates an object to a function f. In a subset $A \subset \mathbb{R}$ being a domain, 'domain' is an adjective for subsets of reals.
11. Proof that the constant, identity and square functions are continuous by (WC).
12. Exercise: continuity of power, modulus, exponential and root functions.
13. Rules about continuity of resultant function at a point/over domain with respect to operations of addition, subtraction, multiplication, division and composition.
14. Applications: Continuity of polynomial and rational functions.
15. Non-traditional functions like Dirichlet's and Thomae's examples.
16. Thousand Dollar Challenge: Find a function from reals to reals which is discontinuous at irrationals and continuous at rationals.
17. A function is bounded if its range is bounded. Supremum of a function is the supremum of its range. Likewise infimum.
18. A function has an absolute maximum if it attains its supremum. Likewise for absolute minimum.
19. Examples for functions which are unbounded and do not attain their sup/inf on \mathbb{R}, on half-rays, on bounded intervals of various kinds.
20. Failure to produce such examples on intervals of type $[a, b]$ for real $a \leq b$.
