
Mean Value Theorem for integrals: Let f : [a, b] → R be a
continuous function. Then there exists ξ ∈ [a, b] such that

f (ξ) =
1

b − a

∫ b

a

f (x)dx .



First Fundamental Theorem of Calculus: Let f : [a, b] → R be a
continuous function. Define F : [a, b] → R by

F (x) =

∫ x

a

f (x)dx .

Then, F is uniformly continuous on [a, b], differentiable on (a, b), and

F ′(x) = f (x) for all x ∈ (a, b).

Let f : [a, b] → R be a function. A function F is called an antiderivative
or primitive of f if F ′(x) = f (x) for all x ∈ [a, b].



Second Fundamental Theorem of Calculus: Let f : [a, b] → R be a
continuous function and let G be an antiderivative of f . Then,∫ b

a

f (x) dx = G (b)− G (a).

Remark: The theorem holds even if f is not assumed to be continuous.
Hint: If F =

∫ x

a
f then F ′ − G ′ = 0 and hence F − G is a constant

function.



Taylor’s Theorem

Let f : [a, b] → R be such that f , f ′, f ′′, . . . , f (n) are continuous on [a, b]
and f (n+1) exists on (a, b). Let x0 ∈ [a, b].
Then for any x ∈ [a, b] there exists c ∈ (x , x0) such that

f (x) = Pn(x) +
f (n+1)(c)

(n + 1)!
(x − x0)

n+1.

In particular, there exists c ∈ (a, b) such that

f (b) = f (a)+ f ′(a)(b− a)+ . . .+
f (n)(a)

n!
(b− a)n +

f (n+1)(c)

(n + 1)!
(b− a)n+1.

Remark: If x0 < x , then the interval should be taken as (x0, x).



Power Series

Let (an) be a sequence. Then for x ∈ R the series
∞∑
n=0

anx
n is called a

power series.

In general the series for a ∈ R, the series
∞∑
n=0

an(x − a)n is called power

series around a.
We will assume that a = 0.



Theorem: Suppose the series
∞∑
n=0

anx
n converges at some x = x0 and

diverges at x = x1. Then

1

∞∑
n=0

anx
n converges absolutely for all |x | < |x0|.

2

∞∑
n=0

anx
n diverges for all |x | > |x1|.

Thus either the series
∞∑
n=0

anx
n converges only at x = 0 or there exists

unique r > 0, such that the series converges absolutely for all |x | < r and
diverges for all |x | > r .
This r is called the radius of convergence.



If the series converges only at x = 0, then the radius of convergence is 0.
If the series converges for all x ∈ R, then the radius of convergence is ∞.
Formula for radius of convergence:

r =
1

lim sup n
√
|an|

Although, lim sup has not been discussed in the class, in the special case,
when lim n

√
|an| exists, it is known that lim sup n

√
|an| = lim n

√
|an|. You

may use this special case for the calculation of radii of convergence of
power series.
Conventions:

If n
√

|an| is a monotonic and unbounded sequence, then we say r = 0

If lim n
√
|an| = 0, then we say r = ∞



Taylor’s series

The power series

f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + . . .+

f (n)(a)

n!
(x − a)n + . . .

is called Taylor’s series of f around a.
If a = 0, then the power series is called Maclaurin series.
Remark: If f is infinite times differentiable at a then the corresponding
Taylor series is defined. Moreover, Pn(x) is the n-th partial sum of the
Taylor series.



Examples

Let f : R \ {−1, 1} → R be defined by f (x) = 1
1−x . Then the Taylor’s

series of f around 0 (i.e. Maclaurin’s series) is the geometric series

∞∑
n=0

xn.

This converges for all x ∈ (−1, 1) and diverges for |x | > 1. Thus the
radius of convergence is 1.



Examples

∑∞
n=1(nx)

n. In this case, n
√
|an| = n, which is monotonic and

unbounded. Therefore, radius of convergence r = 0.∑∞
n=1(3x)

n. In this case, n
√
|an| = 3, which is a constant sequence,

hence convergent. Therefore radius of convergence r = 1
3 .∑∞

n=1

(
x
n

)n
. In this case, n

√
an = 1

n , which converges to 0. Therefore
the radius of convergence is r = ∞.



Examples

ex =
∞∑
n=0

xn

n!
, x > 0.

What is the radius of convergence?


