Mean Value Theorem for integrals: Let $f : [a, b] \rightarrow \mathbb{R}$ be a **continuous** function. Then there exists $\xi \in [a, b]$ such that

$$f(\xi) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

イロト 不得 トイヨト イヨト

= na0

First Fundamental Theorem of Calculus: Let $f : [a, b] \to \mathbb{R}$ be a **continuous** function. Define $F : [a, b] \to \mathbb{R}$ by

$$F(x) = \int_a^x f(x) dx$$

Then, F is uniformly continuous on [a, b], differentiable on (a, b), and

$$F'(x) = f(x)$$
 for all $x \in (a, b)$.

Let $f : [a, b] \to \mathbb{R}$ be a function. A function F is called an antiderivative or primitive of f if F'(x) = f(x) for all $x \in [a, b]$.

(ロ) (同) (ヨ) (ヨ) (ヨ) (000

Second Fundamental Theorem of Calculus: Let $f : [a, b] \rightarrow \mathbb{R}$ be a **continuous** function and let *G* be an antiderivative of *f*. Then,

$$\int_a^b f(x) \, dx = G(b) - G(a).$$

Remark: The theorem holds even if f is not assumed to be continuous. **Hint:** If $F = \int_a^x f$ then F' - G' = 0 and hence F - G is a constant function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Taylor's Theorem

Let $f : [a, b] \to \mathbb{R}$ be such that $f, f', f'', \dots, f^{(n)}$ are continuous on [a, b]and $f^{(n+1)}$ exists on (a, b). Let $x_0 \in [a, b]$. Then for any $x \in [a, b]$ there exists $c \in (x, x_0)$ such that

$$f(x) = P_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

In particular, there exists $c \in (a, b)$ such that

$$f(b) = f(a) + f'(a)(b-a) + \ldots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$$

Remark: If $x_0 < x$, then the interval should be taken as (x_0, x) .

Let (a_n) be a sequence. Then for $x \in \mathbb{R}$ the series $\sum_{n=0}^{\infty} a_n x^n$ is called a power series. In general the series for $a \in \mathbb{R}$, the series $\sum_{n=0}^{\infty} a_n (x-a)^n$ is called power series around a. We will assume that a = 0.

「日本・日本・日本・

Theorem: Suppose the series $\sum_{n=0}^{\infty} a_n x^n$ converges at some $x = x_0$ and diverges at $x = x_1$. Then

•
$$\sum_{n=0}^{\infty} a_n x^n$$
 converges absolutely for all $|x| < |x_0|$.
• $\sum_{n=0}^{\infty} a_n x^n$ diverges for all $|x| > |x_1|$.
Thus either the series $\sum_{n=0}^{\infty} a_n x^n$ converges only at $x = 0$ or there exists
unique $r > 0$, such that the series converges absolutely for all $|x| < r$ and
diverges for all $|x| > r$.
This r is called the radius of convergence.

・ロ・・団・・団・・団・ ・ロ・

If the series converges only at x = 0, then the radius of convergence is 0. If the series converges for all $x \in \mathbb{R}$, then the radius of convergence is ∞ . Formula for radius of convergence:

$$r = rac{1}{\limsup \sqrt[n]{|a_n|}}$$

Although, $\limsup a_n$ not been discussed in the class, in the special case, when $\lim \sqrt[n]{|a_n|}$ exists, it is known that $\limsup \sqrt[n]{|a_n|} = \lim \sqrt[n]{|a_n|}$. You may use this special case for the calculation of radii of convergence of power series.

Conventions:

• If $\sqrt[n]{|a_n|}$ is a monotonic and unbounded sequence, then we say r = 0

ヘロト ヘロト ヘヨト ヘヨト

3

• If $\lim \sqrt[n]{|a_n|} = 0$, then we say $r = \infty$

The power series

$$f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \ldots$$

is called Taylor's series of f around a. If a = 0, then the power series is called Maclaurin series. **Remark**: If f is infinite times differentiable at a then the corresponding Taylor series is defined. Moreover, $P_n(x)$ is the *n*-th partial sum of the Taylor series. Let $f : \mathbb{R} \setminus \{-1, 1\} \to \mathbb{R}$ be defined by $f(x) = \frac{1}{1-x}$. Then the Taylor's series of f around 0 (i.e. Maclaurin's series) is the geometric series

This converges for all $x \in (-1, 1)$ and diverges for |x| > 1. Thus the radius of convergence is 1.

- $\sum_{n=1}^{\infty} (nx)^n$. In this case, $\sqrt[n]{|a_n|} = n$, which is monotonic and unbounded. Therefore, radius of convergence r = 0.
- $\sum_{n=1}^{\infty} (3x)^n$. In this case, $\sqrt[n]{|a_n|} = 3$, which is a constant sequence, hence convergent. Therefore radius of convergence $r = \frac{1}{3}$.
- $\sum_{n=1}^{\infty} \left(\frac{x}{n}\right)^n$. In this case, $\sqrt[n]{a_n} = \frac{1}{n}$, which converges to 0. Therefore the radius of convergence is $r = \infty$.

$$e^{x}=\sum_{n=0}^{\infty}\frac{x^{n}}{n!}, \qquad x>0.$$

イロト イヨト イヨト イヨト

æ

What is the radius of convergence?