Note on max, min, lower-bound, upper-bound, least-element, greatest-element, inf \& sup

max The purpose of this section is to develop a definition of maximum of a finite subset of real numbers. First we shall define $\max _{2}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. Given any two elements x and y in \mathbb{R}, define

$$
\max _{2}(x, y)= \begin{cases}x & \text { if } x \geq y \tag{1}\\ y & \text { if } x<y\end{cases}
$$

Notice that ' $\max _{2}$ ' is a 2 input, 1 output function. So far, we have defined 'max' or 'maximum' of two numbers.
Can we extend the definition to a finite set? Suppose $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ is a finite-sequence of real numbers, for some natural number n. What is a definition for $\max \left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$? Saying 'it is the biggest one' or 'largest number in the set' etc. - they are essentially meaningless. They DO NOT constitute a mathematical definition.
Proper definition for maximum of a tuple (ordered sequence) of real numbers: We define $\max \left(x_{1}\right)=x_{1}$ and $\max \left(x_{1}, x_{2}\right)=\max _{2}\left(x_{1}, x_{2}\right)$ as above. And having defined $\max \left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right)$ for a natural number k, we define

$$
\begin{equation*}
\max \left(x_{1}, x_{2}, x_{3}, \ldots, x_{k+1}\right)=\max _{2}\left(\max \left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right), x_{k+1}\right) \tag{2}
\end{equation*}
$$

By the principle of mathematical induction we have defined maximum of any finite ordered collection of real numbers.
Exercise: Prove that the above definition does not depend on the order in which the elements of a finite set are written. With this, maximum of a finite subset of real numbers becomes well-defined.
Elaboration: To help you understand the definition, let us try what we mean by $\max \left(x_{1}, x_{2}, x_{3}\right)$, for instance. Following above..

$$
\begin{align*}
& \max \left(x_{1}, x_{2}, x_{3}\right)=\max _{2}\left(\max \left(x_{1}, x_{2}\right), x_{3}\right) \tag{3}\\
& =\max _{2}\left(\max _{2}\left(x_{1}, x_{2}\right), x_{3}\right) \tag{4}\\
& = \begin{cases}\max _{2}\left(x_{1}, x_{3}\right) & \text { if } x_{1} \geq x_{2} \\
\max _{2}\left(x_{2}, x_{3}\right) & \text { if } x_{1}<x_{2}\end{cases} \tag{5}\\
& =\left\{\begin{array}{lll}
x_{1} & \text { if } x_{1} \geq x_{2} \text { and if } x_{1} \geq x_{3} & \text { (i) } \\
x_{3} & \text { if } x_{1} \geq x_{2} \text { and if } x_{1}<x_{3} & \text { (ii) } \\
x_{2} & \text { if } x_{1}<x_{2} \text { and if } x_{2} \geq x_{3} & \text { (iii) } \\
x_{3} & \text { if } x_{1}<x_{2} \text { and if } x_{2}<x_{3} & \text { (iv) }
\end{array}\right. \tag{6}
\end{align*}
$$

Alternately, note that the order-relations between three real numbers falls under one of the following 6 cases:

1. $x_{1} \geq x_{2} \geq x_{3}$ This falls under (i) above
2. $x_{1} \geq x_{3} \geq x_{2}$ This falls under (i) above
3. $x_{2} \geq x_{1} \geq x_{3}$ This falls under (iii) above
4. $x_{2} \geq x_{3} \geq x_{1}$ This falls under (iii) above
5. $x_{3} \geq x_{1} \geq x_{2}$ This falls under (ii) above
6. $x_{3} \geq x_{2} \geq x_{1}$ This falls under (iv) above

You could try calculating $\max (3,4,5)=\max _{2}\left(\max _{2}(3,4), 5\right)=\max _{2}(4,5)=5$, as expected. Likewise, try: $\max (4,3,5)$, $\max (5,3,4)$ etc. for practice, applying the elaboration above. For further practice, write out $\max \left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, with all sub-cases in full like above.
min Carefully develop a definition for minimum of a finite set completely analogous to the above discussion and definition of max of a finite set.
examples 1. Given the set $F=\left\{\left.\frac{n}{n+1} \right\rvert\, n \in \mathbb{N}\right\}$, what is max F ? The correct answer is: "So far, max has been defined only for finite sets. Unless the definition of max is extended to be applicable to infinite sets, we cannot answer this question." What is min F ? The correct answer is "So far, min has been defined only for finite sets. Unless, etc...."
2. Given the set $G=\{z \mid z \in \mathbb{Z}, z<0\}$ what is the $\max G$, min G ? The correct answer is " \max and min of G cannot be determined as G is an infinite set and the definitions are applicable for finite sets alone."

Is 1 NOT the minimum of \mathbb{N} ? No. Is -1 NOT the maximum of G ? Again, no. But for a clarification, see definition of "greatest-element" below. This issue has contributed to some confusion.
lower-bound A real number l is a lower bound for a set $S \subset \mathbb{R}$, if $l \leq s$ for all $s \in S$. Note that it is not necessary for l to be in S.
upper-bound A real number u is an upper bound for a set $S \subset \mathbb{R}$, if $s \leq u$ for all $s \in S$.
examples For the set F above, check that $-10,-1,0, \frac{1}{4}$ are all lower-bounds while $10,2,1.5,1$ are all upper-bounds. For the set G above, check that $-1,0,1,10, \sqrt{2}$ are all upper-bounds. Further check that G has no lower-bound.
least-element A real number t is a(the?) least-element for a set $S \subset \mathbb{R}$, if (i) $t \in S$ and (ii) $t \leq s$ for every $s \in S$. Note that(can you check and confirm?) t is a least-element for a set S if t is a lower-bound and t is an element of S.
greatest-element A real number g is a(the?) greatest-element for a set $S \subset \mathbb{R}$, if (i) $g \in S$ and (ii) $s \leq g$ for every $s \in S$. Note that(can you check and confirm?) g is a greatest-element for a set S if g is an upper-bound and g is an element of S.
existence It is not necessary for every subset of reals to have a least-element. However, every finite subset of reals has a least-element, the mimimum of the set. Likewise, it is not necesary for every subset of reals to have a greatest-element. Further, every finite subset of reals has a greatest-element, the maximum of the set.
uniqueness If a subset of reals has a least-element, it is unique. Likewiese, if a subset of reals has a greatest-element, it is unique.
examples Check that $\frac{1}{2}$ is the least-element for S, above. Further check that G has no least-element. Show that the set F above has no greatest-element while the set G has -1 as its greatestelement. Owing to the latter, many students want to say the maximum of G is $-1-$ which is technically incorrect - as maximum has not been defined for an infinite subset of real numbers.
inf, sup For a subset S of real-numbers, let s be an upper bound. If for any upper-bound u of S, we have the property that $s \leq u$, then s is a supremum of S, denoted by $\sup S$. Analogously define infimum of a subset of reals.
existence If S is a non-empty subset of \mathbb{R}, and if S has a lower-bound, inf S exists in \mathbb{R}. Likewise if S is a non-empty subset of \mathbb{R}, and if S has an upper-bound, $\sup S$ exists in \mathbb{R}. The former is the completeness axiom and the latter can be derived from the former.
uniqueness If the supremum of a set exists, it is unique. Likewise for the infimum. Prove these statements.
examples Further, check that $\frac{1}{2}$ is the infimum of $F, 1$ is the supremum of F, the infimum of G does not exist and -1 is the supremum of G.

Exercises 1. If S is a finite subset of reals, $\min S$ and $\max S$ exist and satisfy $\min S=$ least - element of $S=$ $\inf S, \max S=$ greatest - element of $S=\sup S$.
2. Find examples for a subset S of \mathbb{R} which has no upper-bound. Likewise find examples with no lower-bound.
3. If a set has a lower-bound in reals, it has infinitely many lower-bounds. Likewise for upper bounds.
4. When a least element for a set exists, it is unique. Likewise for greatest-element.
5. Find examples for S a subset of \mathbb{R}, which has and does not have the least-element and which has and does not have the greatest-element.
6. Find examples for a subset S of reals having a lower-bound without having a least-element. Likewise, find examples for a subset S having an upper-bound without having a greatestelement.
7. If α is the least element of a subset S of \mathbb{R}, then $\alpha=\inf S$. Likewise, If β is the greatestelement of a subset S of \mathbb{R}, then $\beta=\sup S$.
8. Find examples for a subset S of reals having no $\inf S$ in \mathbb{R}. Likewise, find examples for a subset of reals with no $\sup S$ in reals.
9. Find examples for a subset S of \mathbb{R} such that $\inf S$ exists but S does not have a leastelement. Likewise, find examples for sets which have a well-defined supremum but not greatest-element.
10. From your exercises conclude that the concepts of min, least-element, infimum are of 'increasing' generality. Likewise, conclude that max, greatest-element, supremum are of 'increasing' generality. Finally, you might take this observation as "justifying" the need for our lectures on supremum and infimum as opposed to "being-stuck" with maximum and minimum.

