- 1. Suppose that α and β are reals and $\sum a_n$ and $\sum b_n$ are two convergent series.
 - (i) Show that the series $\sum (\alpha a_n + \beta b_n)$ is convergent.
 - (ii) Find an example such that $\sum a_n b_n$ diverges.
 - (iii) Owing to (ii) discover a natural series defined in terms of $\sum a_n$ and $\sum b_n$ which converges and converges to $(\sum a_n)(\sum b_n)$.
- 2. Discuss the convergence (or divergence) of the following series.
 - (a) $\sum \frac{1}{(n+1)(n+2)}$ (b) $\sum \frac{n}{2^n}$ (c) $\sum \frac{(n!)^2}{(2n)!}$ (d) $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \frac{1}{5^2} + \frac{1}{6^3} + \cdots$

{Use a calculator/computer to evaluate first 'few' terms of the sequence of partial sums, to get a grip.}

3. For real |r| < 1 and natural k, investigate the convergence or divergence of

$$\sum n^k r^n$$
, $\sum k^n r^n$, $\sum n! r^n$, $\sum \frac{n^k}{k^n}$, $\sum \frac{n^k}{n!}$, $\sum \frac{k^n}{n!}$.

- 4. For $i = 1, 2, 3, 4, 5, \ldots$, let
 - (a) (a_n^1) denote the sequence $+1, +1, -1, +1, +1, -1, \dots$
 - (b) (a_n^2) be the sequence $+1, -1, +1, +1, -1, +1, \dots$
 - (c) (a_n^3) be the sequence $-1, +1, +1, -1, +1, +1, \dots$
 - (d) (a_n^4) be the sequence $+1, +1, +1, -1, +1, +1, -1, \dots$

Investigate the convergence or divergence of each of the series $\sum \frac{a_n^i}{n}$.

- 5. (a) For every natural n, let real $a_n > 0$. Assume $\sum a_n$ is convergent. Prove that $\sum a_n^2$ is convergent.
 - (b) Give an example of a series such that $\sum a_n$ is convergent while $\sum a_n^2$ is divergent.
- 6. (a) If $\sum a_n$ is absolutely convergent and (b_n) is a bounded sequence, show that $\sum a_n b_n$ is absolutely convergent.
 - (b) Give an example for an absolutely convergent $\sum a_n$ and an unbounded sequence (b_n) such that $\sum a_n b_n$ diverges.
 - (c) Give an example for a conditionally convergent $\sum a_n$ and a bounded sequence (b_n) such that $\sum a_n b_n$ diverges.
- 7. If (a_n) is a sequence and if $\lim(n^2 a_n)$ exists, show that $\sum a_n$ is absolutely convergent.
- 8. Problem 8(f) below.
- 9. Does the series

$$\frac{1}{1} - \frac{1}{2^2} + \frac{1}{3} - \frac{1}{4^2} + \frac{1}{5} - \frac{1}{6^2} + \frac{1}{7} - \frac{1}{8^2} + \frac{1}{9} - \frac{1}{10^2} + \cdots,$$

converge or diverge? Investigate with justifications. (Formal definition: The series is $\sum a_n$, where the sequence satisfies $a_{2n-1} = \frac{1}{2n-1}$ and $a_{2n} = -\frac{1}{(2n)^2}$)

10. Show that there exists a rearrangement of the alternating harmonic series whose sequence of partial sums has neither an upper nor a lower bound.

ADVANCED

- 11. Given any sequence (a_n) , define its positive part as the sequence $a_n^+ = \max(a_n, 0)$ and its negative part as $a_n^- = \min(a_n, 0)$. Denote $\sum a_n^+$, $\sum a_n^-$, $\sum a_n$ and $\sum |a_n|$ by P, N, C and A respectively. Show the following.
 - (a) If both P and N converge, then both C and A converge. Find their limits.
 - (b) If one of P or N converges while the other diverges, then both C and A diverge.
 - (c) If both P and N diverge then at most one of C or A converges and there are examples where both C and A diverge.

- (d) If both C and A converge, then both P and N converge.
- (e) Is there an example where A converges while C diverges?
- (f) If C converges while A diverges (i.e., the series $\sum a_n$ is conditionally convergent), then both P and N diverge.
- (g) If both C and A diverge, then at most one of P or N converges and there are examples where both Por N diverge.

12. If α, β are reals of the same sign and p is any natural prove $\sum \frac{1}{\alpha + n\beta} \frac{1}{\alpha + (n+1)\beta} \cdots \frac{1}{\alpha + (n+p)\beta} = \frac{1}{p\beta} \cdot \frac{1}{\alpha + \beta} \frac{1}{\alpha + 2\beta} \cdots \frac{1}{\alpha + p\beta}$

- 13. Suppose $\sum a_n$ is conditionally convergent. Let $\varphi : \mathbb{N} \to \mathbb{N}$ be a bijection. Define $W = \{ |\varphi(n) n| | n \in \mathbb{N} \}$. Investigate the conjecture: $\sum a_{\varphi(n)} = \sum a_n$ if and only if W is bounded.
- 14. {Problem 1(iii) was about multiplying series. This one is about dividing two series.} Let (s_n) and (t_n) be the sequence of partial sums of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$. Assume that $t_n \neq 0$ for each natural n. Define a sequence (q_n) via $q_1 := \frac{s_1}{t_1}$ and $q_{n+1} := \frac{a_{n+1}t_n - b_{n+1}s_n}{t_n t_{n+1}}$. Prove that $\sum q_n$ converges to $\sum a_n / \sum b_n$.
- 15. For a sequence (a_n) define its signed variation to be $\sum (a_{n+1} a_n)$ and its (unsigned or total) variation to be $\sum |a_{n+1} - a_n|$. Say that (a_n) has bounded variation if its variation converges.
 - (a) Prove that a sequence converges if and only if its signed variation converges.
 - (b) Prove that a sequence of bounded variation converges.
 - (c) Find examples of a convergent sequences which are and are not of bounded variation.
 - (d) Prove that a monotonic sequence is of bounded variation if and only if it is bounded.
 - (e) Prove that a sum, difference, product and constant multiple of sequences of bounded variation are of bounded variation. How about a quotient?
 - (f) Every sequence of bounded variation can be demonstrated to be a difference of two monotonic bounded sequences.