1. Suppose that α and β are reals and $\sum a_{n}$ and $\sum b_{n}$ are two convergent series.
(i) Show that the series $\sum\left(\alpha a_{n}+\beta b_{n}\right)$ is convergent.
(ii) Find an example such that $\sum a_{n} b_{n}$ diverges.
(iii) Owing to (ii) discover a natural series defined in terms of $\sum a_{n}$ and $\sum b_{n}$ which converges and converges to $\left(\sum a_{n}\right)\left(\sum b_{n}\right)$.
2. Discuss the convergence (or divergence) of the following series.
(a) $\sum \frac{1}{(n+1)(n+2)}$
(c) $\sum \frac{(n!)^{2}}{(2 n)!}$
(b) $\sum \frac{n}{2^{n}}$
(d) $\frac{1}{1^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{2}}+\frac{1}{4^{3}}+\frac{1}{5^{2}}+\frac{1}{6^{3}}+\cdots$
\{Use a calculator/computer to evaluate first 'few' terms of the sequence of partial sums, to get a grip.\}
3. For real $|r|<1$ and natural k, investigate the convergence or divergence of

$$
\sum n^{k} r^{n}, \quad \sum k^{n} r^{n}, \quad \sum n!r^{n}, \quad \sum \frac{n^{k}}{k^{n}}, \quad \sum \frac{n^{k}}{n!}, \quad \sum \frac{k^{n}}{n!}
$$

4. For $i=1,2,3,4,5, \ldots, \quad$ let
(a) $\left(a_{n}^{1}\right)$ denote the sequence $+1,+1,-1,+1,+1,-1, \ldots$
(b) $\left(a_{n}^{2}\right)$ be the sequence $+1,-1,+1,+1,-1,+1, \ldots$
(c) $\left(a_{n}^{3}\right)$ be the sequence $-1,+1,+1,-1,+1,+1, \ldots$
(d) $\left(a_{n}^{4}\right)$ be the sequence $+1,+1,+1,-1,+1,+1,+1,-1, \ldots$

Investigate the convergence or divergence of each of the series $\sum \frac{a_{n}^{i}}{n}$.
5. (a) For every natural n, let real $a_{n}>0$. Assume $\sum a_{n}$ is convergent. Prove that $\sum a_{n}^{2}$ is convergent.
(b) Give an example of a series such that $\sum a_{n}$ is convergent while $\sum a_{n}^{2}$ is divergent.
6. (a) If $\sum a_{n}$ is absolutely convergent and $\left(b_{n}\right)$ is a bounded sequence, show that $\sum a_{n} b_{n}$ is absolutely convergent.
(b) Give an example for an absolutely convergent $\sum a_{n}$ and an unbounded sequence $\left(b_{n}\right)$ such that $\sum a_{n} b_{n}$ diverges.
(c) Give an example for a conditionally convergent $\sum a_{n}$ and a bounded sequence $\left(b_{n}\right)$ such that $\sum a_{n} b_{n}$ diverges.
7. If $\left(a_{n}\right)$ is a sequence and if $\lim \left(n^{2} a_{n}\right)$ exists, show that $\sum a_{n}$ is absolutely convergent.
8. Problem 8(f) below.
9. Does the series

$$
\frac{1}{1}-\frac{1}{2^{2}}+\frac{1}{3}-\frac{1}{4^{2}}+\frac{1}{5}-\frac{1}{6^{2}}+\frac{1}{7}-\frac{1}{8^{2}}+\frac{1}{9}-\frac{1}{10^{2}}+\cdots
$$

converge or diverge? Investigate with justifications. (Formal definition: The series is $\sum a_{n}$, where the sequence satisfies $a_{2 n-1}=\frac{1}{2 n-1}$ and $\left.a_{2 n}=-\frac{1}{(2 n)^{2}}\right)$
10. Show that there exists a rearrangment of the alternating harmonic series whose sequence of partial sums has neither an upper nor a lower bound.
11. Given any sequence $\left(a_{n}\right)$, define its positive part as the sequence $a_{n}^{+}=\max \left(a_{n}, 0\right)$ and its negative part as $a_{n}^{-}=\min \left(a_{n}, 0\right)$. Denote $\sum a_{n}^{+}, \sum a_{n}^{-}, \sum a_{n}$ and $\sum\left|a_{n}\right|$ by P, N, C and A respectively. Show the following.
(a) If both P and N converge, then both C and A converge. Find their limits.
(b) If one of P or N converges while the other diverges, then both C and A diverge.
(c) If both P and N diverge then at most one of C or A converges and there are examples where both C and A diverge.
(d) If both C and A converge, then both P and N converge.
(e) Is there an example where A converges while C diverges?
(f) If C converges while A diverges (i.e., the series $\sum a_{n}$ is conditionally convergent), then both P and N diverge.
(g) If both C and A diverge, then at most one of P or N converges and there are examples where both P or N diverge.
12. If α, β are reals of the same sign and p is any natural prove

$$
\sum \frac{1}{\alpha+n \beta} \frac{1}{\alpha+(n+1) \beta} \cdots \frac{1}{\alpha+(n+p) \beta}=\frac{1}{p \beta} \cdot \frac{1}{\alpha+\beta} \frac{1}{\alpha+2 \beta} \cdots \frac{1}{\alpha+p \beta}
$$

13. Suppose $\sum a_{n}$ is conditionally convergent. Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection. Define $W=\{|\varphi(n)-n| \mid n \in \mathbb{N}\}$. Investigate the conjecture: $\sum a_{\varphi(n)}=\sum a_{n}$ if and only if W is bounded.
14. \{Problem 1(iii) was about multiplying series. This one is about dividing two series.\} Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be the sequence of partial sums of the series $\sum a_{n}$ and $\sum b_{n}$. Assume that $t_{n} \neq 0$ for each natural n. Define a sequence $\left(q_{n}\right)$ via $q_{1}:=\frac{s_{1}}{t_{1}}$ and $q_{n+1}:=\frac{a_{n+1} t_{n}-b_{n+1} s_{n}}{t_{n} t_{n+1}}$. Prove that $\sum q_{n}$ converges to $\sum a_{n} / \sum b_{n}$.
15. For a sequence $\left(a_{n}\right)$ define its signed variation to be $\sum\left(a_{n+1}-a_{n}\right)$ and its (unsigned or total) variation to be $\sum\left|a_{n+1}-a_{n}\right|$. Say that $\left(a_{n}\right)$ has bounded variation if its variation converges.
(a) Prove that a sequence converges if and only if its signed variation converges.
(b) Prove that a sequence of bounded variation converges.
(c) Find examples of a convergent sequences which are and are not of bounded variation.
(d) Prove that a monotonic sequence is of bounded variation if and only if it is bounded.
(e) Prove that a sum, difference, product and constant multiple of sequences of bounded variation are of bounded variation. How about a quotient?
(f) Every sequence of bounded variation can be demonstrated to be a difference of two monotonic bounded sequences.
