- 1. (a) Show that for every $x \in \mathbb{R}$, there exists a unique $z \in \mathbb{Z}$, such that $z \leq x < z + 1$
 - (b) Define a function $f : \mathbb{R} \to \mathbb{Z}$ via f(x) = z, the unique z in part (a). f is called "the greatest-integer-function" and the value f(x) is usually denoted as [x].
 - (c) Show that f is continuous at every $c \in \mathbb{R} \setminus \mathbb{Z}$, i.e., for every $c \in \mathbb{R}$ but $c \notin \mathbb{Z}$. Further, show that f is discontinuous for every $c \in \mathbb{Z}$.
 - (d) Define $g : \mathbb{R} \setminus \mathbb{Z} \to \mathbb{Z}$ via g(x) = f(x). Draw a graph of g. Show that g is a continuous function.
- 2. Applying the Weierstrass' Criterion, prove that the function $f : \mathbb{R} \to \mathbb{R}$ given by $x \mapsto x^3$ is continuous.
- 3. Define $g : \mathbb{R} \to \mathbb{R}$ by $x \mapsto 2x$ if x is rational, and $x \mapsto x + 3$ if x is irrational. Find all points of continuity of g.
- 4. Prove that the (six basic) trigonometric functions are continuous.
- 5. Show that the polynomial $p(x) := x^4 + 7x^3 9$ has at least two real roots. Use a calculator to locate these roots to within two decimal places.
- 6. Show that every real polynomial of odd degree has at least one real root.
- 7. Find examples for or prove non–existence of continuous functions whose domains and ranges are from the collection

 $\{[0,1], [0,100], [0,1), [0,100), (0,1], (0,100], (0,1), (0,100), \mathbb{R}\}.$