- 1. Consider $g : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ given by g(x) = 1/x. Recall the definition of derivative as the limit of a difference quotient. Using this, find the derivative of g at any $c \in \mathbb{R} \setminus \{0\}$.
- 2. (a) Given any real y, give a precise definition of its *cube-root* and denote it by $y^{\frac{1}{3}}$.
 - (b) Prove that the function $\psi : \mathbb{R} \to \mathbb{R}$ given by $y \mapsto y^{\frac{1}{3}}$ is well-defined and continuous.
 - (c) Show that ψ is not differentiable at zero.
 - (d) Show that ψ is differentiable at every non-zero real.
- 3. Let I be an interval and $f: I \to \mathbb{R}$ differentiable (on I). Prove the following.
 - (a) If $f' \equiv 0$ on I then f is a constant.
- (f) If f is strictly decreasing on I then $f' \leq 0$.
- (b) If f is a constant then $f' \equiv 0$ on I. (g) If f is increasing on I then $f' \ge 0$ on I.
- (c) If f' > 0 on I then f is strictly increasing on I. (h) If f is decreasing on I then $f' \le 0$ on I.
- (d) If f' < 0 on I then f is strictly decreasing on I. (i) If $f' \ge 0$ on I then f is increasing on I.
- (e) If f is strictly increasing on I then $f' \ge 0$. (j) If $f' \le 0$ on I then f is decreasing on I.
- 4. Can you find a formal definition for the graph of a function $f : A \to B$, for $A, B \subset \mathbb{R}$? Let a < b be reals and $f : [a, b] \to \mathbb{R}$ be continuous. Assume the second derivative f'' exists on (a, b). Suppose that the graph of f intersects the line segment joining the points (a, f(a)) and (b, f(b)) at (c, f(c)) for some real c such that a < c < b. Show that there exists a real $\xi \in (a, b)$ satisfying $f''(\xi) = 0$.
- 5. (a) For a natural n, let $\{a_i\}_{i=1}^n$ and $\{b_i\}_{i=1}^n$ be real numbers satisfying $a_1 < a_2 < \cdots < a_n$. Find a differentiable $h : \mathbb{R} \to \mathbb{R}$ satisfying $h(a_i) = b_i$ for every $1 \le i \le n$. Next, find another one.
 - (b) Let $a, b, p, q, \alpha, \beta$ be reals with $a \neq b$. Find a differentiable $g : \mathbb{R} \to \mathbb{R}$ satisfying $g(a) = p, g(b) = q, g'(a) = \alpha$ and $g'(b) = \beta$. Next, find another one.
- 6. Find examples for or prove non–existence of differentiable functions whose domains and ranges are from the collection
 - $\{[0,1], [0,100], [0,1), [0,100), (0,1], (0,100], (0,1), (0,100), \mathbb{R}\}.$

ADVANCED

- 7. Let f (usually written as f(x)) be a real non-zero polynomial. A root of f is a real c such that f(c) = 0. (Real Analysis does not recognize 'complex' roots). A root c of f is of multiplicity k, for a natural k, if $f(c) = 0, f'(c) = 0, f''(c) = 0, \ldots, f^{(k-1)}(c) = 0$ but $f^{(k)}(c) \neq 0$. (Here $f^{(0)}(c) = f(c), f^{(1)}(c) = f'(c), f^{(2)}(c) = f''(c), \ldots$)
 - (a) Show that multiplicity of a root is well–defined for every non–zero polynomial and is at most the degree of that polynomial.
 - (b) If for a natural k, $(x-c)^k$ divides f, then c is a root of f of multiplicity at least k.
 - (c) Show that if c is a root of f of multiplicity k, then $(x-c)^k$ divides f but $(x-c)^{k+1}$ does not divide f.
 - (d) Prove that a polynomial of degree n has at most n roots (even if multiplicities are included). You may christen this as the 'Real Fundamental Theorem of Algebra'.
 - (e) For each natural $n \ge 2$, give an example for a polynomial of degree n which has strictly fewer roots than n.
 - (f) By (d), every non-zero polynomial has finitely many roots. Let p be the number of roots discounting multiplicities. Indeed, let $\{c_i\}_{i=1}^p$ be all the real roots of a polynomial with multiplicities $\{m_i\}_{i=1}^p$. Show that $f = \left(\prod_{i=1}^p (x - c_i)^{m_i}\right)g$ for a polynomial g of even degree which has no real roots. Moreover, either for all x, g(x) > 0 or for all x, g(x) < 0.
 - (g) Show that every polynomial of even degree has an even number of roots while every polynomial of odd degree has an odd number of roots, counting multiplicities.
 - (h) Given any polynomial, \mathbb{R} can be broken up into a collection of disjoint open intervals on each of which the polynomial is strictly monotonic.

More explicitly, let l be the number of distinct roots of odd multiplicities of f'.

i. If l = 0, show that f is strictly monotonic on \mathbb{R} .

- ii. If l > 0, there exist uniquely defined reals $\{c_i\}_{i=1}^l$ such that $-\infty = c_0 < c_1 < c_2 < \cdots < c_l < c_{l+1} = \infty$ with the following property: f is strictly monotonic on each of the intervals (c_i, c_{i+1}) , for every $0 \le i \le l$.
- iii. In the second case above, the nature of monotonicity of f flips as you move from each interval to its subsequent.
- 8. For each natural k, show that the function $f_k : \mathbb{R} \to \mathbb{R}$ given by $f_k(x) = x^{\frac{1}{2k+1}}$ and the function $g_k : [0, \infty) \to \mathbb{R}$ given by $g_k(x) = x^{\frac{1}{2k}}$ are differentiable at every non-zero real and are not differentiable at zero.
- 9. Find an example for a differentiable function $g : \mathbb{R} \to \mathbb{R}$ such that g'(0) > 0 and g is not increasing on any interval (of non-zero length) containing 0.
- 10. Let *m* and *n* be natural numbers. Let $\{a_i\}_{i=1}^n$, $\{b_i\}_{i=1}^n$, $\{c_i\}_{i=1}^n$, ... be m+1 sets of real numbers with each set having *n* reals. Assume $a_1 < a_2 < \cdots < a_n$. Find an *m* times differentiable $f : \mathbb{R} \to \mathbb{R}$ satisfying $f(a_i) = b_i$, $f'(a_i) = c_i$, $f''(a_i) = d_i$,... (upto *m*-th derivative) for every $1 \le i \le n$.
- 11. Let a < b be reals and $f : [a, b] \to \mathbb{R}$ be continuous. For a natural $n \ge 3$, assume the *n*-th derivative $g = \frac{d^n f}{d x^n}$ exists on (a, b). Suppose the graph of f intersects the line segment joining (a, f(a)) and (b, f(b)) at each of $(c_1, f(c_1)), (c_2, f(c_2)), \ldots, (c_{n-1}, f(c_{n-1}))$ for some real numbers $a < c_1 < c_2 < \cdots < c_{n-1} < b$. Show that there exists a real $\xi \in (a, b)$ satisfying $g(\xi) = 0$.
- 12. Let $f: A \to \mathbb{R}$ be a function over a domain A. Suppose $c \in A$ and f is differentiable at c and f'(c) = 0. Then either f is locally invertible with the inverse not differentiable at f(c), or there exists sequences (a_n) and (b_n) such that for every $n, a_n \neq b_n, f(a_n) = f(b_n)$ and $a_n, b_n \to c$.
- 13. Let A be a domain and $f: A \to \mathbb{R}$ be locally invertible at a $c \in A$. Is it true that either f is differentiable at c or f^{-1} is differentiable at f(c)?
- 14. Let I be an interval and $f: I \to \mathbb{R}$ differentiable. Let $Z \subset I$ be finite. If f' > 0 on $I \setminus Z$ while f' = 0 on Z, then show that f is strictly increasing on I. One application is strict monotonicity of odd power functions.