1. Let $f:[0,3] \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{ccc}
-1 & \text { if } & 0 \leq x \leq 1 \\
0 & \text { if } & 1<x \leq 2 \\
1 & \text { if } & 2<x \leq 3
\end{array}\right.
$$

Using the definition of riemann integrability show that $f \in \mathcal{R}[0,3]$.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined as

$$
f(x)= \begin{cases}x & \text { if } \quad x=1 / n \text { for some } n \in \mathbb{N} \\ 0 & \text { if } \quad x \neq 1 / n \text { for any } n \in \mathbb{N}\end{cases}
$$

Show that f is riemann integrable.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be given by

$$
f(x)=\left\{\begin{array}{ccc}
x & \text { if } & x \text { is rational } \\
0 & \text { if } & x \text { is irrational }
\end{array}\right.
$$

Show by using the cauchy criterion that f is not riemann integrable.
4. Consider the collection of functions $f, g:[0,1] \rightarrow \mathbb{R}$ such that f and g are bounded, but, neither f nor g is riemann integrable. Find examples from such a collection satisfying each of the following
(a) $f+g$ is riemann integrable
(b) $f g$ is riemann integrable
(c) $|f|$ is riemann integrable.
5. Let $f \in \mathcal{R}[0,1]$ and $\left(\dot{\mathcal{P}}_{n}\right)$ is a (particular) sequence of tagged partitions of $[0,1]$ such that $\lim _{n \rightarrow \infty}\left\|\dot{\mathcal{P}}_{n}\right\|=0$. If $\lim _{n \rightarrow \infty} S\left(f, \dot{\mathcal{P}}_{n}\right)=0$, show that $\int_{0}^{1} f=0$.
6. Evaluate $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{i n+n^{2}}}$.
7. If $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous and if $\int_{a}^{b} f=\int_{a}^{b} g$, prove that there exists a $c \in[a, b]$ such that $f(c)=g(c)$.
8. \{Mean value theorem of integral calculus\} For reals $a \leq b$, let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Show that there exists a $\xi \in[a, b]$ such that $\int_{a}^{b} f=f(\xi)(b-a)$.
9. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Suppose $\int_{0}^{x} f=\int_{x}^{1} f$ for all $x \in[0,1]$. Then, show that $f(x) \equiv 0$.
10. Find an $f:[0,1] \rightarrow \mathbb{R}$ such that f is differentiable 4 times but not the 5 -th time. \{Hint: Fundamental Theorem of Calculus

